David W. Schindler

Learn More
Nitrogen is a key element controlling the species composition, diversity, dynamics, and functioning of many terrestrial, freshwater, and marine ecosystems. Many of the original plant species living in these ecosystems are adapted to, and function optimally in, soils and solutions with low levels of available nitrogen. The growth and dynamics of herbivore(More)
For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T(More)
Acid-vulnerable areas are more numerous and widespread than believed 7 years ago. Lakes and streams in acid-vulnerable areas of northeastern North America have suffered substantial declines in acid-neutralizing capacity, the worst cases resulting in biological damage. Many invertebrates are very sensitive to acidification, with some disappearing at pH(More)
The results of bottle and mesocosm experiments were compared with those obtained in whole-ecosystem experiments at the Experimental Lakes Area. Unless they can be cleverly designed to mimic major ecosystem processes and community compositions, smaller-scale experiments often give highly replicable, but spurious, answers. Problems with appropriate scaling(More)
Phosphate is an important nutrient that restricts microbial production in many freshwater and marine environments. The actual concentration of phosphate in phosphorus-limited waters is largely unknown because commonly used chemical and radiochemical techniques overestimate the concentration. Here, using a new steady-state radiobioassay to survey a diverse(More)
Cultural eutrophication has become the primary water quality issue for most of the freshwater and coastal marine ecosystems in the world. However, despite extensive research during the past four to five decades, many key questions in eutrophication science remain unanswered. Much is yet to be understood concerning the interactions that can occur between(More)
Lake 227, a small lake in the Precambrian Shield at the Experimental Lakes Area (ELA), has been fertilized for 37 years with constant annual inputs of phosphorus and decreasing inputs of nitrogen to test the theory that controlling nitrogen inputs can control eutrophication. For the final 16 years (1990-2005), the lake was fertilized with phosphorus alone.(More)
In recent years new information has been obtained concerning nitrogen fluxes to and from the sea as well as internal fluxes of phosphorus between the sediments and the water mass. In the in-depth evaluation of the environmental quality objective "Zero Eutrophication" it was concluded that there were strong reasons to make an extended evaluation of the(More)