Learn More
Nucleophosmin (NPM, B23) is an abundant nucleolar phosphoprotein involved in ribosome biogenesis, and interacts with tumor suppressor proteins p53 and Rb. Here we show that NPM is a UV damage response protein that undergoes nucleoplasmic redistribution and regulates p53 and HDM2 levels and their interaction. By utilizing RNAi approaches and analyses of(More)
BACKGROUND The incidence of acquired demyelination of the CNS (acquired demyelinating syndromes [ADS]) in children is unknown. It is important that physicians recognize the features of ADS to facilitate care and to appreciate the future risk of multiple sclerosis (MS). OBJECTIVE To determine the incidence, clinical features, familial autoimmune history,(More)
The p53-targeted kinases casein kinase 1delta (CK1delta) and casein kinase 1epsilon (CK1epsilon) have been proposed to be involved in regulating DNA repair and chromosomal segregation. Recently, we showed that CK1delta localizes to the spindle apparatus and the centrosomes in cells with mitotic failure caused by DNA-damage prior to mitotic entry. We provide(More)
The DNA binding activity of p53 is required for its tumor suppressor function; we show here that this activity is cryptic but can be activated by cellular factors acting on a C-terminal regulatory domain of p53. A gel mobility shift assay demonstrated that recombinant wild-type human p53 binds DNA sequence specifically only weakly, but a monoclonal antibody(More)
Loss of p53 function occurs during the development of most, if not all, tumour types. This paves the way for genomic instability, tumour-associated changes in metabolism, insensitivity to apoptotic signals, invasiveness and motility. However, the nature of the causal link between early tumorigenic events and the induction of the p53-mediated checkpoints(More)
The p53 and NF-kappaB transcription factor families are important, multifunctional regulators of the cellular response to stress. Here we have investigated the regulatory mechanisms controlling p53-dependent cell cycle arrest and cross talk with NF-kappaB. Upon induction of p53 in H1299 or U-2 OS cells, we observed specific repression of cyclin D1 promoter(More)
Subsurface drainage is a beneficial water management practice in poorly drained soils but may also contribute substantial nitrate N loads to surface waters. This paper summarizes results from a 15-yr drainage study in Indiana that includes three drain spacings (5, 10, and 20 m) managed for 10 yr with chisel tillage in monoculture corn (Zea mays L.) and(More)
Nitrate N fluxes from tile-drained watersheds have been implicated in water quality studies of the Mississippi River basin, but actual NO3-N loads from small watersheds during long periods are poorly documented. We evaluated discharge and NO3-N fluxes passing the outlet of an Iowa watershed (5134 ha) and two of its tile-drained subbasins (493 and 863 ha)(More)
The p53 tumour suppressor protein is a labile transcription factor that is activated and stabilized in response to a wide range of cellular stresses, through a mechanism involving disruption of its interaction with MDM2, a negative regulatory partner. Induction of p53 by DNA damage additionally involves a series of phosphorylation and acetylation(More)
The Mdm2 protein mediates ubiquitylation and degradation of p53 and is a key regulator of this tumor suppressor. More recently, it has been shown that Mdm2 is highly phosphorylated within its central acidic domain. In order to address the issue of how these modifications might regulate Mdm2 function, putative phosphorylation sites within this domain were(More)