David W. Marshak

Learn More
A distinct subpopulation of bipolar cells in macaque monkey retina was labeled with antisera that recognize glycine-extended cholecystokinin precursors. The labeled bipolar cells were found throughout the retina and had dendrites contacting a subpopulation of cone pedicles and axons ramifying in the fifth stratum of the inner plexiform layer. Several lines(More)
PURPOSE Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. The authors sought to explore the functional expression of ionotropic (iGluR) and group 3, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degeneration. METHODS Excitation mapping with(More)
In primates, the retinal ganglion cells that project to the magnocellular layers of the lateral geniculate nucleus have distinctive responses to light, and one of these has been identified morphologically as the parasol ganglion cell. To investigate their synaptic connections, we injected parasol cells with Neurobiotin in lightly fixed baboon retinas. The(More)
Many retinal ganglion cells are coupled via gap junctions with neighboring amacrine cells and ganglion cells. We investigated the extent and dynamics of coupling in one such network, the OFF alpha ganglion cell of rabbit retina and its associated amacrine cells. We also observed the relative spread of Neurobiotin injected into a ganglion cell in the(More)
The short wavelength-sensitive (blue) cone bipolar cells was found to have a nonrandom distribution by analyzing the nearest neighbors and by calculating the density recovery profile (DRP). Blue cones had been shown previously to have a nonrandom distribution (Curcio et al., 1991). The relationship between the two arrays was then analyzed by calculating the(More)
Midget ganglion cells in the foveal slope, parafovea, near periphery and far periphery of human and monkey retinas have been studied by electron microscopy (EM). Five human foveal ganglion cells were reconstructed and found to share input from seven midget bipolar cells. The OFF center ganglion cells were in a one to one relationship with their midget(More)
Parasol retinal ganglion cells are more sensitive to luminance contrast and respond more transiently at all levels of adaptation than midget ganglion cells. This may be due, in part, to differences between bipolar cells that provide their input, and the goal of these experiments was to study these differences. Midget bipolar cells are known to be(More)
Serotonin is a modulatory neurotransmitter that produces many of the cellular changes associated with sensitization of reflexes in Aplysia. These changes have been carefully documented in sensory neurons located in the abdominal ganglion that mediate the gill-siphon withdrawal reflex and in sensory neurons located in the pleural ganglion that mediate the(More)
Whole-mounted human, macaque, and baboon retinas were labelled with an antiserum to human choline acetyltransferase (ChAT), by the immunoperoxidase technique. Previous work in nonprimate species has shown that these cells correspond to the starburst amacrine cells. Labelled somata were disposed on either side of the inner plexiform layer, and their(More)
In primates, one type of retinal ganglion cell, the parasol cell, makes gap junctions with amacrine cells, the inhibitory, local circuit neurons. To study the effects of these gap junctions, we developed a linear, mathematical model of the retinal circuitry providing input to parasol cells. Electrophysiological studies have indicated that gap junctions do(More)