Learn More
A major goal in genomics is to understand how genes are regulated in different tissues, stages of development, diseases, and species. Mapping DNase I hypersensitive (HS) sites within nuclear chromatin is a powerful and well-established method of identifying many different types of regulatory elements, but in the past it has been limited to analysis of(More)
Group A streptococci, a common human pathogen, secrete streptokinase, which activates the host's blood clot-dissolving protein, plasminogen. Streptokinase is highly specific for human plasminogen, exhibiting little or no activity against other mammalian species, including mouse. Here, a transgene expressing human plasminogen markedly increased mortality in(More)
A substantial genetic contribution underlies variation in baseline peripheral blood counts. We performed quantitative trait locus/loci analyses to identify chromosome regions harboring genes influencing red cell hemoglobin concentration using the cell hemoglobin concentration mean (CHCM), a directly measured parameter analogous to the mean cell hemoglobin(More)
Thrombotic thrombocytopenic purpura (TTP) is a life-threatening systemic illness of abrupt onset and unknown cause. Proteolysis of the blood-clotting protein von Willebrand factor (VWF) observed in normal plasma is decreased in TTP patients. However, the identity of the responsible protease and its role in the pathophysiology of TTP remain unknown. We(More)
We detected clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells with the same abnormal karyotype (>5-10%; presumably of clonal origin) in the(More)
Vascular endothelial cells have a central role in various pathophysiological responses such as acute inflammation, wound healing and atherogenesis. The anatomical position of endothelial cells between blood leukocytes and the surrounding vascular smooth muscle cells or stromal fibroblasts may intensify and focus the effects of released endothelial cell(More)
The exocyst complex tethers vesicles at sites of fusion through interactions with small GTPases. The G protein RalA resides on Glut4 vesicles, and binds to the exocyst after activation by insulin, but must then disengage to ensure continuous exocytosis. Here we report that, after recognition of the exocyst by activated RalA, disengagement occurs through(More)
Combined deficiency of factors V and VIII is an autosomal recessive bleeding disorder resulting from alterations in an unknown gene on chromosome 18q, distinct from the factor V and factor VIII genes. ERGIC-53, a component of the ER-Golgi intermediate compartment, was mapped to a YAC and BAC contig containing the critical region for the combined factors V(More)
The metalloprotease ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type I repeats 13) cleaves highly adhesive large von Willebrand factor (VWF) multimers after their release from the endothelium. ADAMTS13 deficiency is linked to a life-threatening disorder, thrombotic thrombocytopenic purpura (TTP), characterized by platelet-rich(More)
The globally disseminated Streptococcus pyogenes M1T1 clone causes a number of highly invasive human diseases. The transition from local to systemic infection occurs by an unknown mechanism; however invasive M1T1 clinical isolates are known to express significantly less cysteine protease SpeB than M1T1 isolates from local infections. Here, we show that in(More)