Learn More
PD 0332991 is a highly specific inhibitor of cyclin-dependent kinase 4 (Cdk4) (IC50, 0.011 micromol/L) and Cdk6 (IC50, 0.016 micromol/L), having no activity against a panel of 36 additional protein kinases. It is a potent antiproliferative agent against retinoblastoma (Rb)-positive tumor cells in vitro, inducing an exclusive G1 arrest, with a concomitant(More)
A small molecule called PD 153035 inhibited the epidermal growth factor (EGF) receptor tyrosine kinase with a 5-pM inhibition constant. The inhibitor was specific for the EGF receptor tyrosine kinase and inhibited other purified tyrosine kinases only at micromolar or higher concentrations. PD 153035 rapidly suppressed autophosphorylation of the EGF receptor(More)
Progression through the G1 phase of the cell cycle requires phosphorylation of the retinoblastoma gene product (pRb) by the cyclin D-dependent kinases CDK4 and CDK6, whose activity can specifically be blocked by the CDK inhibitor p16(INK4A). Misregulation of the pRb/cyclin D/p16(INK4A) pathway is one of the most common events in human cancer and has lead to(More)
Recent evidence indicates that the epidermal growth factor (EGF) receptor mediates a branch of lysophosphatidic acid (LPA)-induced signal transduction pathways that activate mitogen-activated protein (MAP) kinase. However, it is unclear whether the intrinsic tyrosine kinase activity of EGF receptor is involved. We previously showed that reactive oxygen(More)
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in integrin-mediated control of cell behavior. Following cell adhesion to components of the extracellular matrix, FAK becomes phosphorylated at multiple sites, including tyrosines 397, 576, and 577. Tyr-397 is an autophosphorylation site that promotes interaction with c-Src or(More)
A class of high-affinity inhibitors is disclosed that selectively target and irreversibly inactivate the epidermal growth factor receptor tyrosine kinase through specific, covalent modification of a cysteine residue present in the ATP binding pocket. A series of experiments employing MS, molecular modeling, site-directed mutagenesis, and 14C-labeling(More)
A pharmacological approach to inhibition of cyclin-dependent kinases 4 and 6 (Cdk4/6) using highly selective small molecule inhibitors has the potential to provide novel cancer therapies for clinical use. Achieving high levels of selectivity for Cdk4/6, versus other ATP-dependent kinases, presents a significant challenge. The pyrido[2,3-d]pyrimidin-7-one(More)
The identification of 8-ethyl-2-phenylamino-8H-pyrido[2, 3-d]pyrimidin-7-one (1) as an inhibitor of Cdk4 led to the initiation of a program to evaluate related pyrido[2, 3-d]pyrimidin-7-ones for inhibition of cyclin-dependent kinases (Cdks). Analysis of more than 60 analogues has identified some clear SAR trends that may be exploited in the design of more(More)
We report the use of structure-based drug design to create a selective erbB-1 (a.k.a. epidermal growth factor receptor) and erbB-2 (a.k.a. neu/her2 growth factor receptor) tyrosine kinase inhibitor. Using the X-ray crystal structure of the ternary complex of the cAMP-dependent Ser/Thr kinase together with a sequence alignment of the catalytic domains of a(More)
Soybean (Glycine soja var Beeson) formate dehydrogenase has been isolated, purified, and partially characterized by affinity chromatography. The enzyme is a dimer having a total molecular weight of 100,000 and a subunit weight of 47,000. It has activity over a broad pH range, is stable for months at 4 degrees C, and has K(m) values of 0.6 millimolar and 5.7(More)