Learn More
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been originally isolated from the sheep hypothalamus on the basis of its ability to stimulate cAMP formation in anterior pituitary cells. Post-translational processing of the PACAP precursor generates two biologically active molecular forms, PACAP38 and PACAP27, and a novel peptide called(More)
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid peptide that was first isolated from ovine hypothalamic extracts on the basis of its ability to stimulate cAMP formation in anterior pituitary cells. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-glucagon-growth hormone releasing factor-secretin superfamily. The(More)
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide(More)
A key issue in signal transduction is how signaling pathways common to many systems-so-called canonical signaling cassettes-integrate signals from molecules having a wide spectrum of activities, such as hormones and neurotrophins, to deliver distinct biological outcomes. The neuroendocrine cell line PC12, derived from rat pheochromocytoma, provides an(More)
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs(More)
We investigated the effects of PACAP treatment, and endogenous PACAP deficiency, on infarct volume, neurological function, and the cerebrocortical transcriptional response in a mouse model of stroke, middle cerebral artery occlusion (MCAO). PACAP-38 administered i.v. or i.c.v. 1 h after MCAO significantly reduced infarct volume, and ameliorated functional(More)
Oxidative stress, resulting from accumulation of reactive oxygen species, plays a critical role in neuronal cell death associated with neurodegenerative diseases and stroke. In the present study, we have investigated the potential neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on oxidative stress-induced apoptosis.(More)
High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are present in the external granule cell layer of the rat cerebellum during postnatal development. In vitro studies have shown that PACAP promotes cell survival and neurite outgrowth on immature cerebellar granule cells in primary culture. In the present study, we(More)
Caspase-3 knockout mice exhibit thickening of the internal granule cell layer of the cerebellum. Concurrently, it has been shown that intracerebral injection of pituitary adenylate cyclase-activating polypeptide (PACAP) induces a transient increase of the thickness of the cerebellar cortex. In the present study, we have investigated the possible effect of(More)
The distribution and density of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites as well as PACAP-specific receptor 1 (PAC1-R), vasoactive intestinal polypeptide/PACAP receptor 1 (VPAC1-R), and VPAC2-R mRNAs have been investigated in the rat brain from embryonic day 14 (E14) to postnatal day 8 (P8). Significant numbers of binding(More)