Learn More
The epidermal growth factor receptor (EGF-R) plays an important role in development and cell differentiation, and homologues of EGF-R have been identified in a broad range of vertebrate and invertebrate organisms. This work concerns the functional characterization of SER, the EGF-R-like molecule previously identified in the helminth parasite Schistosoma(More)
Activation of the MET tyrosine kinase receptor by hepatocyte growth factor/scatter factor is classically associated with cell survival. Nonetheless, stress stimuli can lead to a caspase-dependent cleavage of MET within its juxtamembrane region, which generate a proapoptotic 40 kDa fragment (p40 MET). We report here that p40 MET is in fact generated through(More)
Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand,(More)
The MET tyrosine kinase receptor activated by its ligand HGF/SF, induces several cellular responses, including survival. Nonetheless, the MET receptor is cleaved in stress conditions by caspases within its intracellular region, generating a 40kDa fragment, p40 MET, with pro-apoptotic properties. Here, we established that this cleavage splits the receptor at(More)
The scatter factor/hepatocyte growth factor regulates scattering and morphogenesis of epithelial cells through activation of the MET tyrosine kinase receptor. In particular, the noncatalytic C-terminal tail of MET contains two autophosphorylation tyrosine residues, which form a multisubstrate-binding site for several cytoplasmic effectors and are thought to(More)
The MET tyrosine kinase, the receptor of hepatocyte growth factor-scatter factor (HGF/SF), is known to be essential for normal development and cell survival. We report that stress stimuli induce the caspase-mediated cleavage of MET in physiological cellular targets, such as epithelial cells, embryonic hepatocytes, and cortical neurons. Cleavage occurs at(More)
The MET tyrosine kinase receptor is a high-affinity receptor for hepatocyte growth factor/scatter factor (HGF/SF). HGF/SF-MET system is necessary for embryonic development, and aberrant MET signalling favours tumorigenesis and metastasis. MET is a prototype of tyrosine kinase receptor, which is able to counteract apoptosis through the initiation of a(More)
The disialoganglioside G(D3) is overexpressed in ∼50% of invasive ductal breast carcinoma, and the G(D3) synthase gene (ST8SIA1) displays higher expression among estrogen receptor-negative breast cancer tumors, associated with a decreased overall survival of breast cancer patients. However, no relationship between ganglioside expression and breast cancer(More)
The scattering of Madin-Darby canine kidney (MDCK) epithelial cells by scatter factor/hepatocyte growth factor (SF/HGF) is associated with transcriptional induction of the urokinase gene, which occurs essentially through activation of an EBS/AP1 response element. We have investigated the signal transduction pathways leading to this transcriptional response.(More)
Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amyloid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that inversely(More)