Learn More
Rising global energy demands, increasing costs and limited natural resources mean that householders are more conscious about managing their domestic resource consumption. Yet, the question of what tools Ubicomp researchers can create for residential resource management remains open. To begin to address this omission, we present a qualitative study of 15(More)
Circadian rhythms are a nearly universal feature of living organisms and affect almost every biological process. Our innate preference for mornings or evenings is determined by the phase of our circadian rhythms. We conduct a genome-wide association analysis of self-reported morningness, followed by analyses of biological pathways and related phenotypes. We(More)
Load-induced fluid flow is a key factor in triggering bone modeling and remodeling processes that maintain bone mass and architecture. To provide an enhanced understanding of fluid flow in bone, unique computational models of a tibial section were developed. The purpose of the study was to examine the effects of incorporating vascular porosity on pore fluid(More)
A liquid jet can break up into a stream of droplets as a result of the Plateau-Rayleigh instability. The droplet formation decreases the jet’s surface area and hence its free energy. Here we present the results of experiments in an unconventional geometry where this instability can be observed: a toroidal section. We discuss the formation of these(More)
ABA-stacked trilayer graphene is a unique 2D electron system with mirror reflection symmetry and unconventional quantum Hall effect. We present low-temperature transport measurements on dual-gated suspended trilayer graphene in the quantum Hall (QH) regime. We observe QH plateaus at filling factors ν = -8, -2, 2, 6, and 10, which is in agreement with the(More)
Astrophysical and cosmological observations do not require the dark matter particles to be absolutely stable. If they are indeed unstable, their decay into positrons might occur at a sufficiently large rate to allow the indirect detection of dark matter through an anomalous contribution to the cosmic positron flux. In this paper we discuss the implications(More)
If interpreted in terms of decaying dark matter, the steep rise in the positron fraction of cosmic rays above 10GeV, as observed by the PAMELA experiment, suggests an underlying production mechanism that favors leptonic channels. We consider a scenario where a portion of the dark matter is made of the gauginos of an unbroken hidden-sector U(1)X , which(More)
Gravitinos are very promising candidates for the cold dark matter of the Universe. Interestingly, to achieve a sufficiently long gravitino lifetime, R parity conservation is not required, thus preventing any dangerous cosmological influence of the next-to-lightest supersymmetric particle. When R parity is violated, gravitinos decay into photons and other(More)
The gravitino is a promising supersymmetric dark matter candidate which does not require exact R-parity conservation. In fact, even with some small R-parity breaking, gravitinos are sufficiently long-lived to constitute the dark matter of the Universe, while yielding a cosmological scenario consistent with primordial nucleosynthesis and the high reheating(More)