Learn More
A set of nonlinear continuum field equations is presented which describes the dynamics of neural activity in cortex. These take into account the most pertinent anatomical and physiological features found in cortex with all parameter values obtainable from independent experiment. Derivation of a white noise fluctuation spectrum from a linearized set of(More)
Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter(More)
A central difficulty in modeling epileptogenesis using biologically plausible computational and mathematical models is not the production of activity characteristic of a seizure, but rather producing it in response to specific and quantifiable physiologic change or pathologic abnormality. This is particularly problematic when it is considered that the(More)
A set of non-linear continuum field equations are presented which describe the macroscopic dynamics of neural activity in cortex. Numerical solutions of the coupled non-linear system of partial differential equations show properties analogous to cortical evoked potentials, oscillations at the frequency of the mammalian alpha rhythm and non-stationary(More)
Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids(More)
BACKGROUND Nitrous oxide (N(2)O) is one of the oldest analgesics/adjuvant agents still in use today; however, its effects on the human electroencephalogram (EEG) remain unclear. It has been proposed that N(2)O may enhance higher-frequency EEG activity (often indicative of alert states and cognition) duration sedation. This possibly paradoxical effect has(More)
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations(More)
BACKGROUND The purpose of this study was to evaluate a new, physiologically inspired method for the analysis of the electroencephalogram during propofol-remifentanil anesthesia. Based on fixed-order autoregressive moving-average modeling, this method was hypothesized to be capable of dissociating the effects that hypnotic and analgesic agents have on brain(More)