David T Dexter

Learn More
The structure and function of mitochondrial respiratory-chain enzyme proteins were studied postmortem in the substantia nigra of nine patients with Parkinson's disease and nine matched controls. Total protein and mitochondrial mass were similar in the two groups. NADH-ubiquinone reductase (Complex I) and NADH cytochrome c reductase activities were(More)
Levels of iron, copper, zinc and manganese were measured by inductively coupled plasma spectroscopy in frozen postmortem brain tissue from patients with Parkinson's disease (PD), progressive supranuclear palsy (PSP), multiple system atrophy with strionigral degeneration (MSA), and Huntington's disease (HD) compared with control subjects. Total iron levels(More)
Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were measured in various brain areas (substantia nigra, putamen, caudate nucleus, globus pallidus, and cerebral cortex) from patients dying with Parkinson's disease, progressive supranuclear palsy, multiple-system atrophy, and Huntington's disease and from control subjects with no(More)
We have used brain tissue from clinically well-documented and neuropathologically confirmed cases of sporadic Parkinson’s disease to establish the transcriptomic expression profile of the medial and lateral substantia nigra. In addition, the superior frontal cortex was analyzed in a subset of the same cases. DNA oligonucleotide microarrays were employed,(More)
Levels of iron, copper, zinc, manganese, and lead were measured by inductively coupled plasma spectroscopy in parkinsonian and age-matched control brain tissue. There was 31-35% increase in the total iron content of the parkinsonian substantia nigra when compared to control tissue. In contrast, in the globus pallidus total iron levels were decreased by 29%(More)
Polyunsaturated fatty acid (PUFA) levels (an index of the amount of substrate available for lipid peroxidation) were measured in several brain regions from patients who died with Parkinson's disease and age-matched control human postmortem brains. PUFA levels were reduced in parkinsonian substantia nigra compared to other brain regions and to control(More)
Metal ions are of particular importance in brain function, notably iron. A broad overview of iron metabolism and its homeostasis both at the cellular level (involving regulation at the level of mRNA translation) and the systemic level (involving the peptide ‘hormone’ hepcidin) is presented. The mechanisms of iron transport both across the blood–brain(More)
In Parkinson's disease oxidative stress and calcium-induced excitotoxicity have been considered important mechanisms leading to cell death for decades, but the factors that make some neurons vulnerable to neurodegeneration while others remain resistant are not fully understood. Studies of the disorder in animal models suggest that the voltage-gated calcium(More)
We examine the evidence for free radical involvement and oxidative stress in the pathological process underlying Parkinson's disease, from postmortem brain tissue. The concept of free radical involvement is supported by enhanced basal lipid peroxidation in substantia nigra in patients with Parkinson's disease, demonstrated by increased levels of(More)
The total activity of superoxide dismutase (SOD) and cytosolic and particulate activity of SOD in human substantia nigra and cerebellum were measured by a spectrophotometric method based on the ability of SOD to inhibit the autoxidation of adrenaline. The cytosolic and particulate isoenzymes of SOD were differentiated by the inclusion of potassium cyanide(More)