Learn More
We present a method to incorporate the relaxation dominated attenuation into the finite-difference time-domain (FDTD) simulation of acoustic wave propagation in complex media. A dispersive perfectly matched layer (DPML) boundary condition, which is suitable for boundary matching to such a dispersive media whole space, is also proposed to truncate the FDTD(More)
A nonperturbational inverse scattering solution for the scattering integral equation (SIE) is presented. The numerical discretization of the SIE is performed by the moment method (MM) using sinc basis functions. Previous algorithms using the alternating variable (AV) nonlinear iteration with algebraic reconstruction technique (ART) solution of the(More)
Recent published results in inverse scattering generally show the difficulty in dealing with moderate to high contrast inhomogeneities when employing linearized or iteratively linearized algorithms (e.g., distorted Born iterative method). This paper presents a fully nonlinear algorithm utilizing full wave field data, that results in ultrasound computed(More)
—Inverse scattering algorithms for reconstructing the physical properties of sea ice from scattered electromagnetic field data are presented. The development of these algorithms has advanced the theory of remote sensing, particularly in the microwave region, and has the potential to form the basis for a new generation of techniques for recovering sea ice(More)
There a re several advantages of inverse imaging over present standa rd imagin g methods such as improved spatia l resolu tion , freedom from multiple scattering and reverberation ar tifacts, a nd t rue qua nt itat ive ima ging. We verify th ese ad van tages a nd illum ina te t he progression from theory to simulat ion, to labo ratory experiments, and(More)
  • 1