Learn More
The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements(More)
We propose a numerical technique for parameter inference in Markov models of biological processes. Based on time-series data of a process we estimate the kinetic rate constants by maximizing the likelihood of the data. The computation of the likelihood relies on a dynamic abstraction of the discrete state space of the Markov model which successfully(More)
SUMMARY We propose a bounding technique for the equilibrium probability distribution of continuous-time Markov chains with population structure and infinite state space. We use Lyapunov functions to determine a finite set of states that contains most of the equilibrium probability mass. Then we apply a refinement scheme based on stochastic complementation(More)
: Recent experimental imaging techniques are able to tag and count molecular populations in a living cell. From these data mathematical models are inferred and calibrated. If small populations are present, discrete-state stochastic models are widely-used to describe the discreteness and randomness of molecular interactions. Based on time-series data of the(More)
—Markov population models (MPMs) are a widely used modelling formalism in the area of computational biology and related areas. The semantics of a MPM is an infinite-state continuous-time Markov chain. In this paper, we use the established continuous stochastic logic (CSL) to express properties of Markov population models. This allows us to express important(More)