David Soloveichik

Learn More
The connection between self-assembly and computation suggests that a shape can be considered the output of a self-assembly “program,” a set of tiles that fit together to create a shape. It seems plausible that the size of the smallest self-assembly program that builds a shape and the shape’s descriptional (Kolmogorov) complexity should be related. We show(More)
Biological organisms perform complex information processing and control tasks using sophisticated biochemical circuits, yet the engineering of such circuits remains ineffective compared with that of electronic circuits. To systematically create complex yet reliable circuits, electrical engineers use digital logic, wherein gates and subcircuits are composed(More)
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to(More)
A highly desired part of the synthetic biology toolbox is an embedded chemical microcontroller, capable of autonomously following a logic program specified by a set of instructions, and interacting with its cellular environment. Strategies for incorporating logic in aqueous chemistry have focused primarily on implementing components, such as logic gates,(More)
Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for(More)
Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the(More)
The development of autonomous molecular computers capable of making independent decisions in vivo regarding local drug administration may revolutionize medical science. Recently Benenson et al. [An autonomous molecular computer for logical control of gene expression, Nature 429 (2004) 423–429.] have envisioned one form such a “smart drug” may take by(More)