Learn More
  • S Jan, D Benoit, +17 authors I Buvat
  • 2011
GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used(More)
PURPOSE Conformal radiotherapy requires accurate patient positioning with reference to the initial three-dimensional (3D) CT image. Patient setup is controlled by comparison with portal images acquired immediately before patient treatment. Several automatic methods have been proposed, generally based on segmentation procedures. However, portal images are of(More)
Deformable registration is needed for a variety of tasks in establishing the voxel correspondence between respiratory phases. Most registration algorithms assume or imply that the deformation field is smooth and continuous everywhere. However, the lungs are contained within closed invaginated sacs called pleurae and are allowed to slide almost independently(More)
PURPOSE Four-dimensional computed tomography (4D CT) can provide patient-specific motion information for radiotherapy planning and delivery. Motion estimation in 4D CT is challenging due to the reduced image quality and the presence of artifacts. We aim to improve the robustness of deformable registration applied to respiratory-correlated imaging of the(More)
Respiratory motion introduces uncertainties when planning and delivering radiotherapy for lung cancer patients. Cone-beam projections acquired in the treatment room could provide valuable information for building motion models, useful for gated treatment delivery or motion compensated reconstruction. We propose a method for estimating 3D+T respiratory(More)
EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intrapatient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This is compounded by the fact that researchers typically test(More)
PURPOSE We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. MATERIALS AND METHODS Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were(More)
A main challenge in radiotherapy is to precisely take into account organs deformation and motion in order to adapt the treatment to each patient. This is particularly important in lung cancer where breathing leads to large displacements. In this work, breath holding techniques (with Active Breath Control device) were used to reduce movements during(More)
PURPOSE To study the interfraction reproducibility of breath-holding using active breath control (ABC), and to develop computerized tools to evaluate three-dimensional (3D) intrathoracic motion in each patient. METHODS AND MATERIALS Since June 2002, 11 patients with non-small-cell lung cancer enrolled in a Phase II trial have undergone four CT scans: one(More)