Learn More
GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used(More)
Deformable registration is needed for a variety of tasks in establishing the voxel correspondence between respiratory phases. Most registration algorithms assume or imply that the deformation field is smooth and continuous everywhere. However, the lungs are contained within closed invaginated sacs called pleurae and are allowed to slide almost independently(More)
PURPOSE Four-dimensional computed tomography (4D CT) can provide patient-specific motion information for radiotherapy planning and delivery. Motion estimation in 4D CT is challenging due to the reduced image quality and the presence of artifacts. We aim to improve the robustness of deformable registration applied to respiratory-correlated imaging of the(More)
EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intrapatient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This is compounded by the fact that researchers typically test(More)
PURPOSE Conformal radiotherapy requires accurate patient positioning with reference to the initial three-dimensional (3D) CT image. Patient setup is controlled by comparison with portal images acquired immediately before patient treatment. Several automatic methods have been proposed, generally based on segmentation procedures. However, portal images are of(More)
Respiratory motion is a major concern in cone-beam (CB) computed tomography (CT) of the thorax. It causes artifacts such as blur, streaks, and bands, in particular when using slow-rotating scanners mounted on the gantry of linear accelerators. In this paper, we compare two approaches for motion-compensated CBCT reconstruction of the thorax. The first one is(More)
PURPOSE Deformable registration generally relies on the assumption that the sought spatial transformation is smooth. Yet, breathing motion involves sliding of the lung with respect to the chest wall, causing a discontinuity in the motion field, and the smoothness assumption can lead to poor matching accuracy. In response, alternative registration methods(More)
Respiratory motion introduces uncertainties when planning and delivering radiotherapy for lung cancer patients. Cone-beam projections acquired in the treatment room could provide valuable information for building motion models, useful for gated treatment delivery or motion compensated reconstruction. We propose a method for estimating 3D+T respiratory(More)
A main challenge in radiotherapy is to precisely take into account organs deformation and motion in order to adapt the treatment to each patient. This is particularly important in lung cancer where breathing leads to large displacements. In this work, breath holding techniques (with Active Breath Control device) were used to reduce movements during(More)
PURPOSE To study the interfraction reproducibility of breath-holding using active breath control (ABC), and to develop computerized tools to evaluate three-dimensional (3D) intrathoracic motion in each patient. METHODS AND MATERIALS Since June 2002, 11 patients with non-small-cell lung cancer enrolled in a Phase II trial have undergone four CT scans: one(More)