Learn More
BACKGROUND Increased prevalences of diabetes mellitus have been reported among individuals chronically exposed to inorganic arsenic (iAs). However, the mechanisms underlying the diabetogenic effects of iAs have not been characterized. We have previously shown that trivalent metabolites of iAs, arsenite (iAs(III)) and methylarsonous acid (MAs(III)) inhibit(More)
Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or(More)
Previous epidemiologic studies found increased prevalences of type 2 diabetes mellitus in populations exposed to high levels of inorganic arsenic (iAs) in drinking water. Although results of epidemiologic studies in low-exposure areas or occupational settings have been inconclusive, laboratory research has shown that exposures to iAs can produce effects(More)
Metabolism of inorganic arsenic (iAs) is one of the key factors determining the character of adverse effects associated with exposure to iAs. Results of previous studies indicate that liver plays a primary role in iAs metabolism. This paper reviews these results and presents new data that link the capacity of human hepatocytes to metabolize iAs to the(More)
Calpains are a family of non-lysosomal cysteine proteases. Recent studies have identified a member of the calpain family of proteases, calpain 10, as a putative diabetes-susceptibility gene that may be involved in the development of type 2 diabetes. Inhibition of calpain activity has been shown to reduce insulin-stimulated glucose uptake in isolated(More)
BACKGROUND Type 2 diabetes is characterized by glucose intolerance and insulin resistance. Obesity is the leading cause of type 2 diabetes. Growing evidence suggests that chronic exposure to inorganic arsenic (iAs) also produces symptoms consistent with diabetes. Thus, iAs exposure may further increase the risk of diabetes in obese individuals. OBJECTIVES(More)
Tight regulation of integrin affinity is critical for hemostasis. A final step of integrin activation is talin binding to 2 sites within the integrin β cytoplasmic domain. Binding of talin to a membrane-distal NPxY sequence facilitates a second, weaker interaction of talin with an integrin membrane-proximal region (MPR) that is critical for integrin(More)
In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma(More)
Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption(More)
Previous laboratory studies have shown that exposures to inorganic As (iAs) disrupt insulin production or glucose metabolism in cellular and animal models. Epidemiological evidence has also linked chronic human exposures to iAs to an increased risk of diabetes mellitus, a metabolic disease characterized by impaired glucose tolerance and insulin resistance.(More)