Learn More
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic(More)
Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced(More)
Mutations of the DJ-1 (PARK7) gene are linked to familial Parkinson's disease. We used gene targeting to generate DJ-1-deficient mice that were viable, fertile, and showed no gross anatomical or neuronal abnormalities. Dopaminergic neuron numbers in the substantia nigra and fiber densities and dopamine levels in the striatum were normal. However, DJ-1-/-(More)
Recent evidence indicates that cyclin-dependent kinases (CDKs, cdks) may be inappropriately activated in several neurodegenerative conditions. Here, we report that cdk5 expression and activity are elevated after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that damages the nigrostriatal dopaminergic pathway. Supporting the(More)
Cerebellar granule neurons (CGNs) undergo apoptosis when deprived of depolarizing concentrations of KCl, but the underlying molecular mechanisms are not yet clear. Although caspases have been postulated to be involved in CGN cell death, inhibitors of caspases failed to prevent apoptosis under our culture conditions, suggesting an involvement of other(More)
Previous studies have demonstrated that G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases (CDKs) prevent the death of nerve growth factor (NGF)-deprived PC12 cells and sympathetic neurons, suggesting that proteins normally involved in the cell cycle may also serve to regulate neuronal apoptosis. Past findings additionally demonstrate that(More)
Previous reports have indicated that DNA-damaging treatments including certain anticancer therapeutics cause death of postmitotic nerve cells both in vitro and in vivo. Accordingly, it has become important to understand the signaling events that control this process. We recently hypothesized that certain cell cycle molecules may play an important role in(More)
Caveolae organelles and caveolin-1 protein expression are most abundant in adipocytes and endothelial cells. Our initial report on mice lacking caveolin-1 (Cav-1) demonstrated a loss of caveolae and perturbations in endothelial cell function. More recently, however, observation of the Cav-1-deficient cohorts into old age revealed significantly lower body(More)
Neuronal apoptosis plays a critical role in both normal development and disease. However, the precise molecular events controlling neuronal apoptosis are not well understood. Previously, we hypothesized that cell cycle regulatory molecules function in controlling the apoptotic pathways of trophic factor-deprived neurons. To test this hypothesis, we used the(More)
Growing evidence highlights a role for mitochondrial dysfunction and oxidative stress as underlying contributors to Parkinson's disease (PD) pathogenesis. DJ-1 (PARK7) is a recently identified recessive familial PD gene. Its loss leads to increased susceptibility of neurons to oxidative stress and death. However, its mechanism of action is not fully(More)