Learn More
A diversity of nicotinic acetylcholine receptor (nAChR) subtypes has been identified in mammalian brain using recombinant DNA technology. Alterations in the activity of these acetylcholinegated ion channels have been implicated in a number of central nervous system disorders including Alzheimer's disease (AD). The potential therapeutic usefulness of(More)
In mammalian cells, eicosanoid biosynthesis is usually initiated by the activation of phospholipase A2 and the release of arachidonic acid (AA) from membrane phospholipids. The AA is subsequently transformed by cyclooxygenase (COX) and lipoxygenase (LO) pathways to prostaglandins, thromboxane and leukotrienes collectively termed eicosanoids. Eicosanoid(More)
2-Methyl-3-(2(S)-pyrrolidinylmethoxy)pyridine, ABT-089 (S-4), a member of the 3-pyridyl ether class of nicotinic acetylcholine receptor (nAChR) ligands, shows positive effects in rodent and primate models of cognitive enhancement and a rodent model of anxiolytic activity and possesses a reduced propensity to activate peripheral ganglionic type receptors.(More)
The metabolism of the cholinergic channel activator [3H]ABT-418 was studied in 9,000g supernatant (S-9) fractions and precision-cut tissue slices prepared from rat, dog, monkey, and human livers. In rat S-9 fractions and tissue slices, the lactam and trans N'-oxide were detected as major metabolites. The lactam was also the major metabolite in monkey and(More)
Recent evidence indicating the therapeutic potential of cholinergic channel modulators for the treatment of central nervous system (CNS) disorders as well as the diversity of brain neuronal nicotine acetylcholine receptors (nAChRs) have suggested an opportunity to develop subtype-selective nAChR ligands for the treatment of specific CNS disorders with(More)
The in vitro pharmacological properties of a novel cholinergic channel ligand, A-85380 [3-(2(S)-azetidinylmethoxy)pyridine], were examined using tissue preparations that express different putative nAChR subtypes. In radioligand binding studies, A-85380 is shown to be a potent and selective ligand for the human alpha 4 beta 2 nAChR subtype (Ki = 0.05 + 0.01(More)
The synthesis of a series of novel pyrazoles containing a nitrate (ONO(2)) moiety as a nitric oxide (NO)-donor functionality is reported. Their COX-1 and COX-2 inhibitory activities in human whole blood are profiled. Our data demonstrate that pyrazole ring substituents play an important role in COX-2 selective inhibition, such that a cycloalkyl pyrazole(More)
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammation and to provide pain relief but suffer from a major liability concerning their propensity to cause gastric damage. As nitric oxide (NO) is known to be gastro-protective we have synthesized a NO-donating prodrug of naproxen named NMI-1182. We evaluated two cyclo-oxygenase(More)