Learn More
Alzheimer's disease (AD) is characterized by the deposition in brain of beta-amyloid (Abeta) peptides, elevated brain caspase-3, and systemic deficiency of cytochrome c oxidase. Although increased Abeta deposition can result from mutations in amyloid precursor protein or presenilin genes, the cause of increased Abeta deposition in sporadic AD is unknown.(More)
The mitochondrial electron transport chain enzyme cytochrome c oxidase (COX) is defective in patients with sporadic Alzheimer's disease (AD). This defect arises from the mutation of mitochondrial DNA (mtDNA). To develop a tissue culture system that would express this genetically derived bioenergetic lesion and permit characterization of its functional(More)
Self-renewal is a hallmark of stem cells and cancer, but existence of a shared stemness program remains controversial. Here, we construct a gene module map to systematically relate transcriptional programs in embryonic stem cells (ESCs), adult tissue stem cells, and human cancers. This map reveals two predominant gene modules that distinguish ESCs and adult(More)
Sporadic Parkinson's disease is associated with a defect in the activity of complex I of the mitochondrial electron transport chain. This electron transport chain defect is transmitted through mitochondrial DNA, and when expressed in host cells leads to increased oxygen free radical production, increased antioxidant enzyme activities, and increased(More)
Mitochondria are abnormal in persons with amyotrophic lateral sclerosis (ALS) for unknown reasons. We explored whether aberration of mitochondrial DNA (mtDNA) could play a role in this by transferring mitochondrial DNA (mtDNA) from ALS subjects to mtDNA-depleted human neuroblastoma cells. Resulting ALS cytoplasmic hybrids (cybrids) exhibited abnormal(More)
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs (18-24 nucleotides) that have recently been shown to regulate gene expression during cancer progression. Dicer, a central enzyme in the multi-component miRNA biogenesis pathway, is involved in cutting precursor miRNAs to functionally mature forms. Emerging evidence shows that Dicer expression is(More)
Cell models of neurodegenerative diseases (NDD) can involve expression of mutant nuclear genes associated with Mendelian forms of the diseases or effects of toxins believed to replicate essential disease features. Death produced by exposing neural cells to methylpyridinium ion (MPP(+)) or neurotoxic beta amyloid (BA) peptides is frequently used to study(More)
There is mounting evidence for mitochondrial involvement in neurodegenerative diseases including Alzheimer's and Parkinson's disease and amyotrophic lateral sclerosis. Mitochondrial DNA mutations, whether inherited or acquired, lead to impaired electron transport chain (ETC) functioning. Impaired electron transport, in turn, leads to decreased ATP(More)
Progressive supranuclear palsy (PSP) is a neurodegenerative movement disorder of unknown etiology. We hypothesized that mitochondrial DNA (mtDNA) aberration could occur in this disease and contribute to its pathogenesis. To address this we created transmitochondrial cytoplasmic hybrid (cybrid) cell lines expressing mitochondrial genes from persons with PSP.(More)
Recent data suggesting complex I dysfunction in Parkinson's disease (PD) arises from mitochondrial DNA (mtDNA) mutation does not conclusively answer whether the responsible genetic lesion is inherited (primary) or somatic (secondary). To address this question, we identified a family in which multiple members over three generations are affected with PD(More)