David S. Blehert

Learn More
White-nose syndrome (WNS) is a condition associated with an unprecedented bat mortality event in the northeastern United States. Since the winter of 2006*2007, bat declines exceeding 75% have been observed at surveyed hibernacula. Affected bats often present with visually striking white fungal growth on their muzzles, ears, and/or wing membranes. Direct(More)
White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the(More)
White-nose syndrome (WNS) has caused recent catastrophic declines among multiple species of bats in eastern North America. The disease's name derives from a visually apparent white growth of the newly discovered fungus Geomyces destructans on the skin (including the muzzle) of hibernating bats. Colonization of skin by this fungus is associated with(More)
White-nose syndrome (WNS) is an emerging disease of hibernating bats associated with cutaneous infection by the fungus Geomyces destructans (Gd), and responsible for devastating declines of bat populations in eastern North America. Affected bats appear emaciated and one hypothesis is that they spend too much time out of torpor during hibernation, depleting(More)
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2,(More)
White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers(More)
4,5-Dihydroxy-2,3-pentanedione (DPD), a product of the LuxS enzyme in the catabolism of S-ribosylhomocysteine, spontaneously cyclizes to form autoinducer 2 (AI-2). AI-2 is proposed to be a universal signal molecule mediating interspecies communication among bacteria. We show that mutualistic and abundant biofilm growth in flowing saliva of two human oral(More)
White-nose syndrome (WNS) is causing unprecedented declines in several species of North American bats. The characteristic lesions of WNS are caused by the fungus Geomyces destructans, which erodes and replaces the living skin of bats while they hibernate. It is unknown how this infection kills the bats. We review here the unique physiological importance of(More)
White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However,(More)
We describe and illustrate the new species Geomyces destructans. Bats infected with this fungus present with powdery conidia and hyphae on their muzzles, wing membranes, and/or pinnae, leading to description of the accompanying disease as white-nose syndrome, a cause of widespread mortality among hibernating bats in the northeastern US. Based on rRNA gene(More)