David Roger Ladle

Learn More
Two ETS transcription factors of the Pea3 subfamily are induced in subpopulations of dorsal root ganglion (DRG) sensory and spinal motor neurons by target-derived factors. Their expression controls late aspects of neuronal differentiation such as target invasion and branching. Here, we show that the late onset of ETS gene expression is an essential(More)
The connections formed between sensory and motor neurons (MNs) play a critical role in the control of motor behavior. During development, the axons of proprioceptive sensory neurons project into the spinal cord and form both direct and indirect connections with MNs. Two ETS transcription factors, ER81 and PEA3, are expressed by developing proprioceptive(More)
Spinal motor neurons are specified to innervate different muscle targets through combinatorial programs of transcription factor expression. Whether transcriptional programs also establish finer aspects of motor neuron subtype identity, notably the prominent functional distinction between alpha and gamma motor neurons, remains unclear. In this study, we(More)
Accumulation of specific proteins at synaptic structures is essential for synapse assembly and function, but mechanisms regulating local protein enrichment remain poorly understood. At the neuromuscular junction (NMJ), subsynaptic nuclei underlie motor axon terminals within extrafusal muscle fibers and are transcriptionally distinct from neighboring nuclei.(More)
Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent(More)
Motor circuits in the spinal cord integrate information from various sensory and descending pathways to control appropriate motor behavior. Recent work has revealed that target-derived retrograde signaling mechanisms act to influence sequential assembly of motor circuits through combinatorial action of genetic and experience-driven programs. These parallel(More)
In mammalian spinal cord, group Ia proprioceptive afferents form selective monosynaptic connections with a select group of motor pool targets. The extent to which sensory recognition of motor neurons contributes to the selectivity of sensory-motor connections remains unclear. We show here that proprioceptive sensory afferents that express PlexinD1 avoid(More)
Muscle proprioceptive afferents provide feedback critical for successful execution of motor tasks via specialized mechanoreceptors housed within skeletal muscles: muscle spindles, supplied by group Ia and group II afferents, and Golgi tendon organs, supplied by group Ib afferents. The morphology of these proprioceptors and their associated afferents has(More)
The ETS family of transcription factors includes two members, ER81 and PEA3, which are expressed in groups of sensory and motor neurons supplying individual muscles. To investigate a possible role of these genes in determining sensory and/or motor neuron phenotype, we studied mice in which each of these genes was deleted. In contrast to the deletion of(More)
Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an(More)