Learn More
How RNA molecules fold into functional structures is a problem of great significance given the expanding list of essential cellular RNA enzymes and the increasing number of applications of RNA in biotechnology and medicine. A critical step toward solving the RNA folding problem is the characterization of the associated transition states. This is a(More)
RNA is a ubiquitous biopolymer that performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. RNA is unique in that it can carry both genetic information and catalytic function. Its secondary structure domains, which fold stably and independently, assemble hierarchically into modular(More)
The hairpin ribozyme is a minimalist paradigm for studying RNA folding and function. In this enzyme, two domains dock by induced fit to form a catalytic core that mediates a specific backbone cleavage reaction. Here, we have fully dissected its reversible reaction pathway, which comprises two structural transitions (docking/undocking) and a chemistry step(More)
The dynamic mechanisms by which RNAs acquire biologically functional structures are of increasing importance to the rapidly expanding fields of RNA therapeutics and biotechnology. Large energy barriers separating misfolded and functional states arising from alternate base pairing are a well-appreciated characteristic of RNA. In contrast, it is typically(More)
DEAD-box helicases are conserved enzymes involved in nearly all aspects of RNA metabolism, but their mechanisms of action remain unclear. Here, we investigated the mechanism of the DEAD-box protein Mss116 on its natural substrate, the group II intron ai5γ. Group II introns are structurally complex catalytic RNAs considered evolutionarily related to the(More)
The hepatitis delta virus (HDV), an infectious human pathogen and satellite of hepatitis B virus, leads to intensified disease symptoms, including progression to liver cirrhosis. Both the circular RNA genome of HDV and its complementary antigenome contain the same cis-cleaving catalytic RNA motif that plays a crucial role in virus replication. Previously,(More)
The hammerhead ribozyme is one of the best-studied small RNA enzymes, yet is mechanistically still poorly understood. We measured the Mg(2+) dependencies of folding and catalysis for two distinct hammerhead ribozymes, HHL and HH alpha. HHL has three long helical stems and was previously used to characterize Mg(2+)-induced folding. HH alpha has shorter stems(More)
The hepatitis delta virus (HDV) is a human pathogen and satellite RNA of the hepatitis B virus. It utilizes a self-cleaving catalytic RNA motif to process multimeric intermediates in the double-rolling circle replication of its genome. Previous kinetic analyses have suggested that a particular cytosine residue (C(75)) with a pK(a) close to neutrality acts(More)