Learn More
Do endocannabinoids (eCBs) participate in long-term synaptic plasticity in the brain? Using pharmacological approaches and genetically altered mice, we show that stimulation of prelimbic cortex afferents at naturally occurring frequencies causes a long-term depression of nucleus accumbens glutamatergic synapses mediated by eCB release and presynaptic CB1(More)
The phase of spikes of hippocampal pyramidal cells relative to the local field theta oscillation shifts forward ("phase precession") over a full theta cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's(More)
Cannabinoids impair hippocampus-dependent memory in both humans and animals, but the network mechanisms responsible for this effect are unknown. Here we show that the cannabinoids Δ9-tetrahydrocannabinol and CP55940 decreased the power of theta, gamma and ripple oscillations in the hippocampus of head-restrained and freely moving rats. These effects were(More)
Despite the role of excitatory transmission to the nucleus accumbens (NAc) in the actions of most drugs of abuse, the presence and functions of cannabinoid receptors (CB1) on the glutamatergic cortical afferents to the NAc have never been explored. Here, immunohistochemistry has been used to show the localization of CB1 receptors on axonal terminals making(More)
The integrity of the hippocampus is critical for both spatial navigation and episodic memory, but how its neuronal firing patterns underlie those functions is not well understood. In particular, the modality by which hippocampal place cells contribute to spatial memory is debated. We found that administration of the cannabinoid receptor agonist CP55940(More)
Endogenous cannabinoids (eCB) mediate synaptic plasticity in brain regions involved in learning and reward. Here we show that in mice, a single in-vivo exposure to Delta 9-tetrahydrocannabinol (THC) abolishes the retrograde signaling that underlies eCB-mediated synaptic plasticity in both nucleus accumbens (NAc) and hippocampus in vitro. This effect is(More)
The nucleus accumbens (NAc) is an important cerebral area involved in reward and spatial memory (Pennartz et al., 1994), but little is known about synaptic plasticity in this region. Here, electron microscopy revealed that, in the NAc, metabotropic glutamate receptors 2/3 (mGlu2/3) immunostaining was essentially associated with axonal terminals and glial(More)
The nucleus accumbens (NAc) plays a crucial role in addiction. We have recently shown that activation of presynaptic metabotropic glutamate 2/3 receptors (mGlu2/3) induces long-term depression (LTD) at glutamatergic synapses in the mouse nucleus accumbens (NAc) through the long lasting inhibition of P/Q-type Ca2+ channels and the cAMP/protein kinase A (PKA)(More)
The metabotropic glutamate (mGlu) receptors are a family of receptors involved in the tuning of fast excitatory synaptic transmission in the brain. Experiments performed in heterologous expression systems suggest that cell surface expression of group I mGlu receptors is controlled by their auxiliary protein, Homer. However, whether or not this also applies(More)
We describe a method to transfer cDNA into neuronal primary cultures with a commercialised cationic lipid, Transfast. Cultures were transfected at a rate of about 5% with green fluorescent protein (GFP) cDNA. Comparing Transfast to other transfection reagents, we found this compound to be the most efficient. GFP-transfected mouse cerebellar granule cells(More)