Learn More
Salt cress (Thellungiella halophila) is a small winter annual crucifer with a short life cycle. It has a small genome (about 2 x Arabidopsis) with high sequence identity (average 92%) with Arabidopsis, and can be genetically transformed by the simple floral dip procedure. It is capable of copious seed production. Salt cress is an extremophile native to(More)
Terpenoids, the largest class of plant secondary metabolites, play essential roles in both plant and human life. In higher plants, the five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate, are derived from two independent pathways localized in different cellular compartments. The methylerythritol(More)
In vivo stable isotope labeling and computer-assisted metabolic flux analysis were used to investigate the metabolic pathways in petunia (Petunia hybrida) cv Mitchell leading from Phe to benzenoid compounds, a process that requires the shortening of the side chain by a C(2) unit. Deuterium-labeled Phe ((2)H(5)-Phe) was supplied to excised petunia petals.(More)
We have isolated and characterized Petunia hybrida cv. Mitchell phenylacetaldehyde synthase (PAAS), which catalyzes the formation of phenylacetaldehyde, a constituent of floral scent. PAAS is a cytosolic homotetrameric enzyme that belongs to group II pyridoxal 5'-phosphate-dependent amino-acid decarboxylases and shares extensive amino acid identity(More)
In plants, benzoic acid (BA) is believed to be synthesized from Phe through shortening of the propyl side chain by two carbons. It is hypothesized that this chain shortening occurs via either a beta-oxidative or non-beta-oxidative pathway. Previous in vivo isotope labeling and metabolic flux analysis of the benzenoid network in petunia (Petunia hybrida)(More)
The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum(More)
Suspension cultured cells of tomato (Lycopersicon esculentum Mill. cv VFNT Cherry) adapted to water stress induced with polyethylene glycol 6000 (PEG), exhibit marked alterations in free amino acid pools (Handa et al. 1983 Plant Physiol 73: 834-843). Using computer simulation models the in vivo rates of synthesis and utilization and compartmentation of free(More)
When cowpea (Vigna unguiculata) cells maintained at 26 degrees C are transferred to 42 degrees C, rapid accumulation of gamma-aminobutyrate (>10-fold) is induced. Several other amino acids (including beta-alanine, alanine, and proline) are also accumulated, but less extensively than gamma-aminobutyrate. Total free amino acid levels are increased(More)
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline --> betaine aldehyde --> betaine. Our previous experiments with intact chloroplasts, and in vivo(18)O(2) labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD(More)
Cells of Nicotiana tabacum L. var Wisconsin 38 adapted to NaCl (up to 428 millimolar) which have undergone extensive osmotic adjustment accumulated Na(+) and Cl(-) as principal solutes for this adjustment. Although the intracellular concentrations of Na(+) and Cl(-) correlated well with the level of adaptation, these ions apparently did not contribute to(More)