David Ramonet

Learn More
HIV-1 infection causes, with increasing prevalence, neurological disorders characterized in part by neuronal cell death. The HIV-1 protein Tat has been shown to be directly and indirectly neurotoxic. Here, we tested the hypothesis that a non-neurotoxic epitope of Tat can, through actions on immune cells, increase neuronal cell death. Tat(1-72) and a mutant(More)
Synaptic increase of glutamate level, when not coupled to a heightened energy production, renders neurons susceptible to death. Astrocyte uptake and recycling of synaptic glutamate as glutamine is a major metabolic pathway dependent on energy metabolism, which inter-relationships are not fully understood and remain controversial. We examine how the(More)
BACKGROUND TGF-β1 controls many pathophysiological processes including tissue homeostasis, fibrosis, and cancer progression. Together with its latency-associated peptide (LAP), TGF-β1 binds to the latent TGF-β1-binding protein-1 (LTBP-1), which is part of the extracellular matrix (ECM). Transmission of cell force via integrins is one major mechanism to(More)
Cerebrospinal fluid amyloid-beta 1-42 (Aβ1-42) and phosphorylated Tau at position 181 (pTau181) are biomarkers of Alzheimer's disease (AD). We performed an analysis and meta-analysis of genome-wide association study data on Aβ1-42 and pTau181 in AD dementia patients followed by independent replication. An association was found between Aβ1-42 level and a(More)
Mitochondrial complex I dysfunction has long been associated with Parkinson's disease (PD). Recent evidence suggests that mitochondrial involvement in PD may extend beyond a sole respiratory deficit and also include perturbations in mitochondrial fusion/fission or ultrastructure. Whether and how alterations in mitochondrial dynamics may relate to the known(More)
Monoamine oxidase (MAO) A and B and semicarbazide-sensitive amine oxidase (SSAO) localizations in peripheral human tissues were compared by immunohistochemistry. The primary antibodies used were mouse monoclonal anti-human MAO-A (6G11/E1) and anti-human MAO-B (3F12/G10/2E3) and a rabbit polyclonal anti-bovine SSAO antibody. Immunoreactivities of the(More)
Cellular microcalcification observed in a diversity of human pathologies, such as vascular dementia, Alzheimer's disease, Parkinson's disease, astrogliomas, and posttraumatic epilepsy, also develops in rodent experimental models of central nervous system (CNS) neurodegeneration. Central to the neurodegenerative process is the inability of neurons to(More)
In rat brain, calcification associated with excitotoxicity has been proposed to play a protective role, whereas in human brain, nonartherosclerotic calcification is present in several pathological conditions without any clear significance. To determine if calcification can be viewed as a protective step of calcium homeostasis during chronic and acute(More)
Microglial cells involved in the pathogenesis of many neurodegenerative diseases acquire the features of cytotoxic and phagocytic cells in response to certain pathogens and inflammatory signals. K(ATP) channels are energy sensors of ATP availability that link the cell's metabolic state to its membrane excitability. In pancreatic beta cells, they promote(More)
Cholecystokinin (CCK), a neuropeptide originally discovered in the gastrointestinal tract, is abundantly distributed in the mammalian brains including the hippocampus. Whereas CCK has been shown to increase glutamate concentration in the perfusate of hippocampal slices and in purified rat hippocampal synaptosomes, the cellular and molecular mechanisms(More)