Learn More
A novel microelectronic "pill" has been developed for in situ studies of the gastro-intestinal tract, combining microsensors and integrated circuits with system-level integration technology. The measurement parameters include real-time remote recording of temperature, pH, conductivity, and dissolved oxygen. The unit comprises an outer biocompatible capsule(More)
The conventional method of diagnosing disorders of the human gastro-intestinal (GI) tract is by sensors embedded in cannulae that are inserted through the anus, mouth, or nose. However, these cannulae cause significant patient discomfort and cannot be used in the small intestine. As a result, there is considerable ongoing work in developing wireless sensors(More)
(2006) Meeting the design challenges of nano-CMOS electronics: an introduction to an upcoming EPSRC pilot project. Abstract The years of 'happy scaling' are over and the fundamental challenges that the semiconductor industry faces, at both technology and device level, will impinge deeply upon the design of future integrated circuits and systems. This paper(More)
—Line edge roughness (LER) in end-of-the-roadmap integrated circuit interconnects causes variability in their resistance R, capacitance C and hence also their RC delay. We present an analysis of LER-induced variability of resistance, capacitance and delay of short-range interconnects within standard cells at the 32, 22 and 18 nm technology nodes using both(More)
We report the experimental in situ characterization of 30-40 MHz and 868 MHz wireless transmission schemes for ingestible capsules, in porcine carcasses. This includes a detailed study of the performance of a magnetically coupled near-field very high-frequency (VHF) transmission scheme that requires only one eighth of the volume and one quarter of the power(More)
A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future(More)
In this paper, we present a radiotelemetry sensor, designed as a lab-in-a-pill, which incorporates a two-channel microfabricated sensor platform for real-time measurements of temperature and pH. These two parameters have potential application for use in remote biological sensing (for example they may be used as markers that reflect the physiological(More)
This paper describes the design and implementation of a system-on-chip digital pH meter, for use in a wireless capsule application. The system is organized around an 8-bit microcontroller, designed to be functionally identical to the Motorola 6805. The analog subsystem contains a floating-electrode ISFET, which is fully compatible with a commercial CMOS(More)
There is considerable interest in the development of ultra-miniature and low-power sensor microsystems for use in applications such as medical diagnostics, environmental monitoring and other industrial applications. Such ultra-miniature sensor microsystems must contain a large diversity of complex electronics, including sensor interfaces, signal(More)