David R. Hipfner

Learn More
Cell proliferation, cell death, and pattern formation are coordinated in animal development. Although many proteins that control cell proliferation and apoptosis have been identified, the means by which these effectors are linked to the patterning machinery remain poorly understood. Here, we report that the bantam gene of Drosophila encodes a 21 nucleotide(More)
Amplification of the gene encoding multidrug resistance-associated protein (MRP) and overexpression of its cognate mRNA have been detected in multidrug-resistant cell lines derived from several different tumor types. To establish whether or not the increase in MRP is responsible for drug resistance in these cell lines, we have transfected HeLa cells with(More)
The Drosophila Sterile-20 kinase Slik promotes tissue growth during development by stimulating cell proliferation and by preventing apoptosis. Proliferation within an epithelial sheet requires dynamic control of cellular architecture. Epithelial integrity fails in slik mutant imaginal discs. Cells leave the epithelium and undergo apoptosis. The abnormal(More)
We report here the consequences of mutations of a novel locus, named bantam, whose product is involved in the regulation of growth in Drosophila. bantam mutant animals are smaller than wild type, due to a reduction in cell number but not cell size, and do not have significant disruptions in patterning. Conversely, overexpression of the bantam product using(More)
Monoclonal antibody QCRL-1 is highly specific for a defined linear epitope in a relatively poorly conserved region of the human multidrug resistance protein (MRP). We have used QCRL-1 to examine MRP expression in archival and fresh snap-frozen samples of untreated small cell (SC) and non-small cell (NSC) lung cancers (LCs), as well as normal lung. We found(More)
Cell proliferation and programmed cell death are closely controlled during animal development. Proliferative stimuli generally also induce apoptosis, and anti-apoptotic factors are required to allow net cell proliferation. Genetic studies in Drosophila have led to identification of a number of genes that control both processes, providing new insights into(More)
Overexpression of multidrug resistance-associated protein (MRP) has been detected in resistant cell lines derived from a variety of tumor types. The deduced amino acid sequence of MRP suggests that it is a member of the ATP-binding cassette transmembrane transporter superfamily that may be glycosylated and/or phosphorylated [S. P. C. Cole et al., Science(More)
MRP is a M(r) 190,000 integral membrane phosphoglycoprotein that is overexpressed in some drug-selected resistant cell lines and has been shown to cause multidrug resistance in transfected cells. Five murine hybridoma cell lines (QCRL-1, QCRL-2, QCRL-3, QCRL-4, and QCRL-6) have been generated which secrete monoclonal antibodies (MAbs) that react(More)
Multidrug resistance protein, MRP, is a 190-kDa integral membrane phosphoglycoprotein that belongs to the ATP-binding cassette superfamily of transport proteins and is capable of conferring resistance to multiple chemotherapeutic agents. Previous studies have indicated that MRP consists of two membrane spanning domains (MSD) each followed by a nucleotide(More)
The cDNA encoding ATP-binding cassette (ABC) multidrug resistance protein MRP1 was originally cloned from a drug-selected lung cancer cell line resistant to multiple natural product chemotherapeutic agents. MRP1 is the founder of a branch of the ABC superfamily whose members (from species as diverse as plants and yeast to mammals) share several(More)