Learn More
Cell proliferation, cell death, and pattern formation are coordinated in animal development. Although many proteins that control cell proliferation and apoptosis have been identified, the means by which these effectors are linked to the patterning machinery remain poorly understood. Here, we report that the bantam gene of Drosophila encodes a 21 nucleotide(More)
Cell proliferation and programmed cell death are closely controlled during animal development. Proliferative stimuli generally also induce apoptosis, and anti-apoptotic factors are required to allow net cell proliferation. Genetic studies in Drosophila have led to identification of a number of genes that control both processes, providing new insights into(More)
Dynamic regulation of cytoskeletal contractility through phosphorylation of the nonmuscle Myosin-II regulatory light chain (MRLC) provides an essential source of tension for shaping epithelial tissues. Rho GTPase and its effector kinase ROCK have been implicated in regulating MRLC phosphorylation in vivo, but evidence suggests that other mechanisms must be(More)
Multidrug resistance protein, MRP, is a 190-kDa integral membrane phosphoglycoprotein that belongs to the ATP-binding cassette superfamily of transport proteins and is capable of conferring resistance to multiple chemotherapeutic agents. Previous studies have indicated that MRP consists of two membrane spanning domains (MSD) each followed by a nucleotide(More)
Amplification of the gene encoding multidrug resistance-associated protein (MRP) and overexpression of its cognate mRNA have been detected in multidrug-resistant cell lines derived from several different tumor types. To establish whether or not the increase in MRP is responsible for drug resistance in these cell lines, we have transfected HeLa cells with(More)
The acquisition of the multidrug resistance phenotype in human tumours is associated with an overexpression of the 170 kDa P-glycoprotein encoded by the multidrug resistance 1 (MDR1) gene, and also with a 190 kDa membrane ATP-binding protein encoded by a multidrug resistance-associated protein (MRP) gene. Human bladder cancer is a highly malignant neoplasm(More)
  • Kurt C Almquist, Douglas W Loe, David R Hipfner, Jane E Mackie, Susan P C Cole, Roger G Deeley
  • 2006
Overexpression of multidrug resistance-associated protein (MRP) has been detected in resistant cell lines derived from a variety of tumor types. The deduced amino acid sequence of MRP suggests that it is a member of the ATP-binding cassette transmembrane transporter superfamily that may be glycosylated and/or phosphorylated [S. Although the resistance(More)
Hedgehog (Hh) signaling is essential for normal growth, patterning, and homeostasis of many tissues in diverse organisms, and is misregulated in a variety of diseases including cancer. Cytoplasmic Hedgehog signaling is activated by multisite phosphorylation of the seven-pass transmembrane protein Smoothened (Smo) in its cytoplasmic C-terminus. Aside from a(More)
Phosphoinositides regulate myriad cellular processes, acting as potent signaling molecules in conserved signaling pathways and as organelle gatekeepers that recruit effector proteins to membranes. Phosphoinositide-generating enzymes have been studied extensively in yeast and cultured cells, yet their roles in animal development are not well understood.(More)
Inherent or acquired resistance to multiple natural product drugs in human tumour cells is often associated with increased expression of multidrug resistance protein (MRP), a 190-kDa integral membrane protein that belongs to the ATP-binding cassette (ABC) superfamily of transport proteins. Both clinical and experimental investigations of MRP have been(More)