Learn More
Amyloid β (Aβ) peptides are proteolytic products from amyloid precursor protein (APP) and are thought to play a role in Alzheimer disease (AD) pathogenesis. While much is known about molecular mechanisms underlying cerebral Aβ accumulation in familial AD, less is known about the cause(s) of brain amyloidosis in sporadic disease. Animal and postmortem(More)
The ability to detect single protein molecules in blood could accelerate the discovery and use of more sensitive diagnostic biomarkers. To detect low-abundance proteins in blood, we captured them on microscopic beads decorated with specific antibodies and then labeled the immunocomplexes (one or zero labeled target protein molecules per bead) with an(More)
OBJECTIVE To conduct a pilot study to evaluate the prognostic potential of serum tau protein measurements to predict neurological outcome 6 months following resuscitation from cardiac arrest. METHODS In this retrospective observational study, we employed a new ultra sensitive digital immunoassay technology to examine serial serum samples from 25 cardiac(More)
Disease detection at the molecular level is driving the emerging revolution of early diagnosis and treatment. A challenge facing the field is that protein biomarkers for early diagnosis can be present in very low abundance. The lower limit of detection with conventional immunoassay technology is the upper femtomolar range (10(-13) M). Digital immunoassay(More)
We have developed a highly sensitive immunoassay-called digital ELISA-that is based on the detection of single enzyme-linked immunocomplexes on beads that are sealed in arrays of femtoliter wells. Digital ELISA was designed to be highly efficient in the capturing of target proteins, labeling of these proteins, and their detection in single molecule arrays(More)
The quantitative measurement of inflammatory cytokines in blood has been limited by insufficient sensitivity of conventional immunoassays. This limitation has prevented the widespread clinical monitoring of cytokine concentrations in chronic inflammatory diseases. We applied a sensitive, single molecule detection technology to measure TNF-α and IL-6 in the(More)
We have developed a method that enables the multiplexed detection of proteins based on counting single molecules. Paramagnetic beads were labeled with fluorescent dyes to create optically distinct subpopulations of beads, and antibodies to specific proteins were then immobilized to individual subpopulations. Mixtures of subpopulations of beads were then(More)
We report a method for combining the detection of single molecules (digital) and an ensemble of molecules (analog) that is capable of detecting enzyme label from 10(-19) M to 10(-13) M, for use in high sensitivity enzyme-linked immunosorbent assays (ELISA). The approach works by capturing proteins on microscopic beads, labeling the proteins with enzymes(More)
We report a system and assay for performing fully-automated measurement of 6 proteins simultaneously with single molecule sensitivity. The system combines handling of samples, reagents, and consumables, with a module for imaging single molecule arrays (Simoa) to enable immunoassays that have high sensitivity (~fg/mL), are multiplexed, and are(More)
We report a method for isolating individual paramagnetic beads in arrays of femtolitre-sized wells and detecting single enzyme-labeled proteins on these beads using sequential fluid flows in microfabricated polymer array assemblies. Arrays of femtolitre-sized wells were fabricated in cyclic olefin polymer (COP) using injection moulding based on DVD(More)