David R. F. Leach

Learn More
Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may(More)
High-throughput studies of the 6,200 genes of Saccharomyces cerevisiae have provided valuable data resources. However, these resources require a return to experimental analysis to test predictions. An in-silico screen, mining existing interaction, expression, localization, and phenotype datasets was developed with the aim of selecting minimally(More)
The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating(More)
The expansion of CAG·CTG repeat tracts is responsible for several neurodegenerative diseases, including Huntington disease and myotonic dystrophy. Understanding the molecular mechanism of CAG·CTG repeat tract expansion is therefore important if we are to develop medical interventions limiting expansion rates. Escherichia coli provides a simple and tractable(More)
DNA damage checkpoints exist to promote cell survival and the faithful inheritance of genetic information. It is thought that one function of such checkpoints is to ensure that cell division does not occur before DNA damage is repaired. However, in unicellular organisms, rapid cell multiplication confers a powerful selective advantage, leading to a dilemma.(More)
  • 1