Learn More
Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a(More)
This paper presents a simple framework for Horn clause abduc tion with probabilities associated with hypotheses The framework incorporates assumptions about the rule base and independence as sumptions amongst hypotheses It is shown how any probabilistic knowledge representable in a discrete Bayesian belief network can be represented in this framework The(More)
This paper presents a simple logical framework for default reasoning. The semantics is normal first order model theory; instead of changing the logic, the way in which the logic is used is changed. Rather than expecting reasoning to be just deduction (in any logic) from our knowledge, we examine the consequences of viewing reasoning as a very simple case of(More)
There have been many proposals for first-order belief networks (i.e., where we quantify over individuals) but these typically only let us reason about the individuals that we know about. There are many instances where we have to quantify over all of the individuals in a population. When we do this the population size often matters and we need to reason(More)
In many domains it is desirable to assess the preferences of users in a qualitative rather than quantitative way. Such representations of qualitative preference orderings form an important component of automated decision tools. We propose a graphical representation of preferences that reflects conditional dependence and independence of preference statements(More)
Inspired by game theory representations, Bayesian networks, influence diagrams, structured Markov decision process models, logic programming, and work in dynamical systems, the independent choice logic (ICL) is a semantic framework that allows for independent choices (made by various agents, including nature) and a logic program that gives the consequence(More)
Partially-observable Markov decision processes provide a general model for decision theoretic planning problems, allowing trade-offs between various courses of actions to be determined under conditions of uncertainty, and incorporating partial observations made by an agent. Dynamic programming algorithms based on the belief state of an agent can be used to(More)
Probabilistic Horn abduction is a simple framework to combine probabilistic and logical reasoning into a coherent practical framework. The numbers can be consistently interpreted probabilistically, and all of the rules can be interpreted logically. The relationship between probabilistic Horn abduction and logic programming is at two levels. At the first(More)