David P. Tew

Learn More
Kestutis Aidas,1 Celestino Angeli,2 Keld L. Bak,3 Vebjørn Bakken,4 Radovan Bast,5 Linus Boman,6 Ove Christiansen,7 Renzo Cimiraglia,2 Sonia Coriani,8 Pål Dahle,9 Erik K. Dalskov,10 Ulf Ekström,11 Thomas Enevoldsen,12 Janus J. Eriksen,7 Patrick Ettenhuber,7 Berta Fernández,13 Lara Ferrighi,14 Heike Fliegl,11 Luca Frediani,14 Kasper Hald,15 Asger Halkier,16(More)
An implementation of the full explicitly correlated coupled-cluster singles and doubles model CCSD-F12 using a single Slater-type geminal has been obtained with the aid of automated term generation and evaluation techniques. In contrast to a previously reported computer code [T. Shiozaki et al., J. Chem. Phys. 129, 071101 (2008)], our implementation(More)
The basis set limit Møller-Plesset second-order equilibrium bond lengths of He2, Be2, and Ne2, accurate to 0.01a0, are computed to be 5.785a0, 5.11a0, and 6.05a0. The corresponding binding energies are 22.4+/-0.1, 2180+/-20, and 86+/-2 muE(h), respectively. An accuracy of 95% in the binding energy requires an aug-cc-pV6Z basis or larger for conventional(More)
The reaction HOSO(2)+O(2)-->HO(2)+SO(3) (2) is of crucial importance for sulfuric acid formation in the atmosphere, and reliable thermochemical data are required for an adequate modeling. The currently least well known thermochemical quantity of reaction (2) is the enthalpy of formation of the hydroxysulfonyl radical (HOSO(2)). We report on high-level(More)
We report calculations using a reaction surface Hamiltonian for which the vibrations of a molecule are represented by 3N-8 normal coordinates, Q, and two large amplitude motions, s(1) and s(2). The exact form of the kinetic energy operator is derived in these coordinates. The potential surface is first represented as a quadratic in Q, the coefficients of(More)
Kato's cusp condition gives the exact first order dependence of molecular wave functions on interparticle separation near the coalescence of two charged particles. We derive conditions correct to second order in interparticle separation, which concern second order derivatives of the wave function at the coalescence point. For identical particle coalescence,(More)
By performing a stochastic dynamic in a space of Slater determinants, the full configuration interaction quantum Monte Carlo (FCIQMC) method has been able to obtain energies which are essentially free from systematic error to the basis set correlation energy, within small and systematically improvable error bars. However, the weakly exponential scaling with(More)
The atomization energies of the 105 molecules in the test set of Bakowies [D. Bakowies, J. Chem. Phys. 127 (2007) 084105] have been computed with an estimated standard deviation (from the values compiled in the Active Thermochemical Tables) of ±0.1 kJ/mol per valence electron in the molecule. Equilibrium geometries and harmonic vibrational frequencies were(More)
Explicitly Correlated Electrons in Molecules Christof H€attig, Wim Klopper,* Andreas K€ohn, and David P. Tew Lehrstuhl f€ur Theoretische Chemie, Ruhr-Universit€at Bochum, D-44780 Bochum, Germany Abteilung f€ur Theoretische Chemie, Institut f€ur Physikalische Chemie, Karlsruher Institut f€ur Technologie, KIT-Campus S€ud, Postfach 6980, D-76049 Karlsruhe,(More)
Benchmark, frozen-core CCSD(T) equilibrium harmonic vibrational frequencies of 12 closed-shell and five open-shell molecules are computed to within 1 cm-1 of the basis set limit using the explicitly correlated CCSD(T)-R12 method. The convergence of the standard CCSD(T) method with the one-particle basis sets of Dunning and co-workers is examined and found(More)