David P. Stirling

Learn More
Minocycline has been demonstrated to be neuroprotective after spinal cord injury (SCI). However, the cellular consequences of minocycline treatment on the secondary injury response are poorly understood. We examined the ability of minocycline to reduce oligodendrocyte apoptosis, microglial/macrophage activation, corticospinal tract (CST) dieback, and lesion(More)
Spinal cord injury (SCI) induces a robust inflammatory response and the extravasation of leukocytes into the injured tissue. To further knowledge of the functions of neuroinflammation in SCI in mice, we depleted the early arriving neutrophils using an anti-Ly6G/Gr-1 antibody. Complete blood counts revealed that neutrophils increased approximately 3-fold(More)
OBJECTIVE Failure of remyelination is a critical impediment to recovery in multiple sclerosis (MS). Chondroitin sulfate proteoglycans (CSPGs) have been reported to accumulate in MS lesions, and we thus examined the functional roles of CSPGs on oligodendrocyte precursor cells (OPCs), oligodendrocytes, and remyelination. METHODS We evaluated the expression(More)
Several studies have shown that minocycline, a semisynthetic, second-generation tetracycline derivative, is neuroprotective in animal models of central nervous system trauma and several neurodegenerative diseases. Common to all these reports are the beneficial effects of minocycline in reducing neural inflammation and preventing cell death. Here, the(More)
Spinal cord injury (SCI) triggers a robust inflammatory response that contributes in part to the secondary degeneration of spared tissue. Here, we use flow cytometry to quantify the inflammatory response after SCI. Besides its objective evaluation, flow cytometry allows for levels of particular markers to be documented that further aid in the identification(More)
The matrix metalloproteinases (MMPs) are important enzymes that regulate developmental processes, maintain normal physiology in adulthood and have reparative roles at specific stages after an insult to the nervous system. Conversely, the concordant presence and significant upregulation of several MMP members in virtually all neurological conditions result(More)
We examined the spatial and temporal expression patterns of active p38 mitogen-activated protein kinase (MAPK), an important regulator of immune cell function, following spinal cord injury (SCI). We further assessed whether administration of SB203580, an inhibitor of p38 MAPK activity, would reduce inflammation, improve tissue sparing, and improve(More)
Myelin-derived molecules inhibit axonal regeneration in the CNS. The Long-Evans Shaker rat is a naturally occurring dysmyelinated mutant, which although able to express the components of myelin lacks functional myelin in adulthood. Given that myelin breakdown exposes axons to molecules that are inhibitory to regeneration, we sought to determine whether(More)
Axonal degeneration causes morbidity in many neurological conditions including stroke, neurotrauma and multiple sclerosis. The limited ability of central nervous system (CNS) neurons to regenerate, combined with the observation that axonal damage causes clinical disability, has spurred efforts to investigate the mechanisms of axonal degeneration. Ca influx(More)
Improving neurological outcome after spinal cord injury is a major clinical challenge because axons, once severed, do not regenerate but 'dieback' from the lesion site. Although microglia, the immunocompetent cells of the brain and spinal cord respond rapidly to spinal cord injury, their role in subsequent injury or repair remains unclear. To assess the(More)