Learn More
We study experimentally the synchronization patterns in time-delayed directed Boolean networks of excitable systems. We observe a transition in the network dynamics when the refractory time of the individual systems is adjusted. When the refractory time is on the same order of magnitude as the mean link time delays or the heterogeneities of the link time(More)
We investigate the effects of heterogeneous delays in the coupling of two excitable neural systems. Depending upon the coupling strengths and the time delays in the mutual and self-coupling, the compound system exhibits different types of synchronized oscillations of variable period. We analyze this synchronization based on the interplay of the different(More)
We study networks of nonlocally coupled electronic oscillators that can be described approximately by a Kuramoto-like model. The experimental networks show long complex transients from random initial conditions on the route to network synchronization. The transients display complex behaviors, including resurgence of chimera states, which are network(More)
We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni-(More)
We describe a high-speed physical random number generator based on a hybrid Boolean network with autonomous and clocked logic gates, realized on a reconfigurable chip. The autonomous logic gates are arranged in a bidirectional ring topology and generate broadband chaos. The clocked logic gates receive input from the autonomous logic gates so that random(More)
– We demonstrate theoretically and experimentally that excitable systems can be built with autonomous Boolean networks. Their experimental implementation is realized with asynchronous logic gates on a reconfigurabe chip. When these excitable systems are assembled into time-delay networks, their dynamics display nanosecond time scale spike synchronization(More)
  • 1