David P. Labeda

Learn More
Species of the genus Streptomyces, which constitute the vast majority of taxa within the family Streptomycetaceae, are a predominant component of the microbial population in soils throughout the world and have been the subject of extensive isolation and screening efforts over the years because they are a major source of commercially and medically important(More)
Listeria monocytogenes is a food-borne pathogen capable of growth at refrigeration temperatures. Membrane lipid fatty acids are major determinants of a sufficiently fluid membrane state to allow growth at low temperatures. L. monocytogenes was characterized by a fatty acid profile dominated to an unusual extent (> 95%) by branched-chain fatty acids, with(More)
Actinobacteria encode a wealth of natural product biosynthetic gene clusters, whose systematic study is complicated by numerous repetitive motifs. By combining several metrics, we developed a method for the global classification of these gene clusters into families (GCFs) and analyzed the biosynthetic capacity of Actinobacteria in 830 genome sequences,(More)
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811(T) forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL(More)
The genus Saccharothrix is phylogenetically heterogeneous on the basis of analysis of almost complete 16S rDNA sequences. An evaluation of chemotaxonomic, morphological and physiological properties in the light of the molecular phylogeny data revealed that several species are misclassified. Saccharothrix aerocolonigenes NRRL B-3298T and Saccharothrix flava(More)
The taxonomic status of 16 strains received as Streptomyces hygroscopicus, Streptomyces melanosporofaciens, Streptomyces sparsogenes, Streptomyces sporoclivatus and Streptomyces violaceusniger was evaluated in a polyphasic study. Eleven of the organisms formed a distinct clade in the Streptomyces 16S rRNA gene tree with the type strains of Streptomyces(More)
A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34T, which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces. Analysis of 16S(More)
The taxonomic status of the families Actinosynnemataceae and Pseudonocardiaceae was assessed based on 16S rRNA gene sequence data available for the 151 taxa with validly published names, as well as chemotaxonomic and morphological properties available from the literature. 16S rRNA gene sequences for the type strains of all taxa within the suborder(More)
During the course of a 16S rRNA gene sequence phylogenetic evaluation of putative Glycomyces strains, it was noted that strain NRRL B-16338(T) is phylogenetically nearest to the genus Glycomyces but apparently is not a member of this or any of the other currently described actinomycete genera. The strain was subjected to a polyphasic study using standard(More)
Phytotoxicity and inhibitory effects of the fusarial toxins fumonisin B1 (FB1) [m.p. 103–105 °C], fusaric acid [m.p. 106–107 °C], butenolide (4-acetamido-4-hydroxy-2-butenoic acid lactone) [116–117 °C], 9, 10-dihydroxyfusaric acid [m.p. 150–155 ° C], and moniliformin on chlorophyll synthesis in the aquatic macrophyte Lemna minor (duckweed) were examined.(More)