David P Bartel

Learn More
MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely(More)
We predict regulatory targets of vertebrate microRNAs (miRNAs) by identifying mRNAs with conserved complementarity to the seed (nucleotides 2-7) of the miRNA. An overrepresentation of conserved adenosines flanking the seed complementary sites in mRNAs indicates that primary sequence determinants can supplement base pairing to specify miRNA target(More)
MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both(More)
Mammalian microRNAs (miRNAs) pair to 3'UTRs of mRNAs to direct their posttranscriptional repression. Important for target recognition are approximately 7 nt sites that match the seed region of the miRNA. However, these seed matches are not always sufficient for repression, indicating that other characteristics help specify targeting. By combining(More)
MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs(More)
MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2-7), particularly those in 3' untranslated regions (3'UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it(More)
To better understand the diversity of small silencing RNAs expressed in plants, we employed high-throughput pyrosequencing to obtain 887,000 reads corresponding to Arabidopsis thaliana small RNAs. They represented 340,000 unique sequences, a substantially greater diversity than previously obtained in any species. Most of the small RNAs had the properties of(More)
MicroRNAs (miRNAs) are approximately 21-nucleotide RNAs, some of which have been shown to play important gene-regulatory roles during plant development. We developed comparative genomic approaches to systematically identify both miRNAs and their targets that are conserved in Arabidopsis thaliana and rice (Oryza sativa). Twenty-three miRNA candidates,(More)
MicroRNAs (miRNAs) are small, endogenous RNAs that regulate gene expression in plants and animals. In plants, these approximately 21-nucleotide RNAs are processed from stem-loop regions of long primary transcripts by a Dicer-like enzyme and are loaded into silencing complexes, where they generally direct cleavage of complementary mRNAs. Although plant(More)
We predict regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity. Complementary sites within predicted targets are conserved in rice. Of the 49 predicted targets, 34 are members of transcription factor gene families involved in developmental patterning or cell differentiation. The near-perfect(More)