Learn More
Flight has conferred an extraordinary advantage to some groups of animals. Wing shape is directly related to flight performance and evolves in response to multiple selective pressures. In some species, wings have ornaments such as pigmented patches that are sexually selected. Since organisms with pigmented wings need to display the ornament while flying in(More)
Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We(More)
Wing shape has been shown in a variety of species to be influenced by natural and sexual selection. In damselflies, front- and hind wings can beat independently, and functional differentiation may occur. Males of Calopteryx damselflies show species-specific nuptial flights that differ in colour signalling with the hind wings. Therefore, hind wing shape and(More)
Wing shape is related to flight performance, which is expected to be under selection for improving flight behaviours such as predator avoidance. Moreover, wing conspicuousness, usually involved in sexual selection processes, is also relevant in terms of predation risk. In this study, we examined how predation by a passerine bird, the white wagtail Motacilla(More)
Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing(More)
Using bioclimatic belts as habitat and distribution predictors, the present study examines the implications of the potential distributions of the three Iberian damselflies, Calopteryx Leach (Odonata: Calopterygidae), with the aim of investigating the possible consequences in specific interactions among the species from a sexual selection perspective and of(More)
Batesian mimics can parasitize Müllerian mimicry rings mimicking the warning color signal. The evolutionary success of Batesian mimics can increase adding complexity to the signal by behavioral and locomotor mimicry. We investigated three fundamental morphological and locomotor traits in a Neotropical mimicry ring based on Ithomiini butterflies and(More)
Wings are a key trait underlying the evolutionary success of birds, bats, and insects. For over a century, researchers have studied the form and function of wings to understand the determinants of flight performance. However, to understand the evolution of flight, we must comprehend not only how morphology affects performance, but also how morphology and(More)
  • 1