Learn More
Countergradient variation is a geographical pattern of genotypes (with respect to environments) in which genetic influences on a trait oppose environmental influences, thereby minimizing phenotypic change along the gradient. Phenotypic similarity across changing environments ought to be of intense interest because it belies considerable genotypic change.(More)
M any of the world's fish populations are overexploited, and the ecosystems that sustain them are degraded (1). Unintended consequences of fishing, including habitat destruction, incidental mortality of nontarget species, evolutionary shifts in population demographics, and changes in the function and structure of ecosystems, are being increasingly(More)
Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive:(More)
Some overharvested fish populations fail to recover even after considerable reductions in fishing pressure. The reasons are unclear but may involve genetic changes in life history traits that are detrimental to population growth when natural environmental factors prevail. We empirically modelled this process by subjecting populations of a harvested marine(More)
Latitudinal populations of the Atlantic silverside, Menidia menidia, show substantial genetic variation in rates of energy acquistion and allocation. Reared in common environments, silversides from northern latitudes consume more food, grow faster and more efficiently, store more energy, and produce greater quantities of eggs than their southern(More)
We experimentally tested the hypothesis that energy reserve depletion varies inversely with size in the fish Menidia menidia, an estuarine fish known to exhibit size-dependent winter mortality. Individuals in two size groups were starved at two winter temperatures (4°and 8°C) and sacrificed at a range of time intervals (up to 127 days). Lipid levels and(More)
Evolutionary responses to the long-term exploitation of individuals from a population may include reduced growth rate, age at maturation, body size and productivity. Theoretical models suggest that these genetic changes may be slow or impossible to reverse but rigorous empirical evidence is lacking. Here, we provide the first empirical demonstration of a(More)
How organisms may adapt to rising global temperatures is uncertain, but concepts can emerge from studying adaptive physiological trait variations across existing spatial climate gradients. Many ectotherms, particularly fish, have evolved increasing genetic growth capacities with latitude (i.e. countergradient variation (CnGV) in growth), which are thought(More)
Sex determination in an atherinid fish, the Atlantic silverside (Menidia menidia), is under the control of both genotype and temperature during a specific period of larval development. The sex ratios of the progeny of different females are variable and differ in their responsiveness to temperature. This demonstrates that sex ratio in fishes that normally(More)