Learn More
— In this brief, we address the robust force regulation problem of mechanical systems in physical interaction with compliant environments. The control method that we present is entirely derived under the energy shaping framework. Note that for compliant interactions, standard energy shaping methods (i.e., potential shaping controls using static-state(More)
Despite the recent progress in physically interactive and surgical robotics, the active deformation of compliant objects remains an open problem. The main obstacle to its implementation comes from the difficulty to identify or estimate the object's deformation model. In this paper, we propose a novel vision-based deformation controller for robot(More)
In this paper, we present a new feedback method to automatically servo-control the 3-D shape of soft objects with robotic manipulators. The soft object manipulation problem has recently received a great deal of attention from robotics researchers because of its potential applications in, e.g., food industry, home robots, medical robotics, and manufacturing.(More)
In this paper, we address the positioning problem of remote centre of motion (RCM) mechanisms with uncalibrated image feedback from a monocular camera. Nowadays, RCM mechanisms are widely used in minimally invasive robotic surgery due to their ability to distally rotate a tool around a fixed entry port; note that in most surgical applications, the tools are(More)
Despite the recent progress in physically interactive and surgical robotics, the active deformation of compliant objects remains an open problem. The main obstacle comes from the difficulty to identify/estimate the object's deformation properties. This paper presents a new visually servoed deformation controller for unknown elastic objects. The control law(More)
In this paper, we analyse and present a control approach using the energy shaping formulation to explicitly regulate the applied force of a robot manipulator in contact with a purely elastic environment. The potential energy of the robot-environment system is shaped in a way that its local equilibrium implies the application of the desired force onto the(More)
In this paper, we propose a new vision-based controller to actively deform an unknown elastic object. Note that most deformation controllers in the literature require a-priori knowledge of the object's deformation properties. In contrast to this trend, we present a new Lyapunov-based method that online estimates the unknown deformation Jacobian matrix,(More)
In this paper, we address the active deformation control of compliant objects by robot manipulators. The control of deformations is needed to automate several important tasks, for example, the manipulation of soft tissues, shaping of food materials, or needle insertion. Note that in many of these applications, the object's deformation properties are not(More)
— In this paper, we address the global exponential stability problem of perturbed mechanical systems in free-motion and interacting with passive environments. Particularly, we are interested in incorporating an exponentially stable response to a robust passivity-based control design. We formulate and analyse the stability of the proposed controllers based(More)