David Naranjo-Hernández

Learn More
Modeling of intrabody communication (IBC) entails the understanding of the interaction between electromagnetic fields and living tissues. At the same time, an accurate model can provide practical hints toward the deployment of an efficient and secure communication channel for body sensor networks. In the literature, two main IBC coupling techniques have(More)
Intrabody communication (IBC) is a technique that uses the human body as a transmission medium for electrical signals to connect wireless body sensors, e.g., in biomedical monitoring systems. In this paper, we propose a simple, but accurate propagation model through the skin based on a distributed-parameter circuit in order to obtain general expressions(More)
Galvanic coupling in intrabody communication (IBC) is a technique that couples low-power and low-frequency voltages and currents into the human body, which acts as a transmission medium, and thus constitutes a promising approach in the design of personal health devices. Despite important advances being made during recent years, the investigation of relevant(More)
SIGNIFICANCE The need for increasingly energy-efficient and miniaturized bio-devices for ubiquitous health monitoring has paved the way for considerable advances in the investigation of techniques such as intrabody communication (IBC), which uses human tissues as a transmission medium. However, IBC still poses technical challenges regarding the measurement(More)
In this paper, the main results related to a fall detection system are shown by means of a personal server for the control and processing of the data acquired from multiple intelligent biomedical sensors. This server is designed in the context of a telehealthcare system for the elderly, to whom falls represent a high-risk cause of serious injuries, and its(More)
The main objective of this paper is to present a distributed processing architecture that explicitly integrates capabilities for its continuous adaptation to the medium, the context, and the user. This architecture is applied to a falling detection system through: (1) an optimization module that finds the optimal operation parameters for the detection(More)
This paper presents the hardware and software design and implementation of a low-cost, wearable, and unobstructive intelligent accelerometer sensor for the monitoring of human physical activities. In order to promote healthy lifestyles to elders for an active, independent, and healthy ageing, as well as for the early detection of psychomotor abnormalities,(More)