Learn More
Computational protein design will continue to improve as new implementations and parameterizations are explored. An automated protein design procedure is implemented and applied to the full redesign of 16 globular proteins. We combine established but simple ingredients: a molecular mechanics description of the protein where nonpolar hydrogens are implicit,(More)
Computationally designed protein sequences have been proposed as a basis to perform fold recognition and homology searching. To investigate this possibility, an automated procedure is used to completely redesign 24 SH3 proteins and 22 SH2 proteins. We use the experimental backbone coordinates as fixed templates in the folded state and a molecular mechanics(More)
We describe an automated procedure for protein design, implemented in a flexible software package, called Proteus. System setup and calculation of an energy matrix are done with the XPLOR modeling program and its sophisticated command language, supporting several force fields and solvent models. A second program provides algorithms to search sequence space.(More)
PDZ domains direct protein-protein interactions and serve as models for protein design. Here, we optimized a protein design energy function for the Tiam1 and Cask PDZ domains that combines a molecular mechanics energy, Generalized Born solvent, and an empirical unfolded state model. Designed sequences were recognized as PDZ domains by the Superfamily fold(More)
This chapter describes the organization and use of Proteus, a multitool computational suite for the optimization of protein and ligand conformations and sequences, and the calculation of pK α shifts and relative binding affinities. The software offers the use of several molecular mechanics force fields and solvent models, including two generalized Born(More)
Computational protein design depends on an energy function and an algorithm to search the sequence/conformation space. We compare three stochastic search algorithms: a heuristic, Monte Carlo (MC), and a Replica Exchange Monte Carlo method (REMC). The heuristic performs a steepest-descent minimization starting from thousands of random starting points. The(More)
  • 1