Learn More
Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end(More)
We have previously described a homeotic leafy cotyledon (lec) mutant of Arabidopsis that exhibits striking defects in embryonic maturation and produces viviparous embryos with cotyledons that are partially transformed into leaves. In this study, we present further details on the developmental anatomy of mutant embryos, characterize their response to(More)
FPA is a gene that regulates flowering time in Arabidopsis via a pathway that is independent of daylength (the autonomous pathway). Mutations in FPA result in extremely delayed flowering. FPA was identified by means of positional cloning. The predicted FPA protein contains three RNA recognition motifs in the N-terminal region. FPA is expressed most strongly(More)
Genetic studies of embryo, ovule and flower development in Arabidopsis thaliana have led to the independent isolation of different mutant alleles of a single gene (SIN1/SUS1/CAF, now renamed DCL1) that encodes a complex RNA-processing enzyme. DCL1 shows similarity to the Dicer group of genes, which are required for RNA silencing in Drosophila and(More)
A long-term goal of Arabidopsis research is to define the minimal gene set needed to produce a viable plant with a normal phenotype under diverse conditions. This will require both forward and reverse genetics along with novel strategies to characterize multigene families and redundant biochemical pathways. Here we describe an initial dataset of 250 EMB(More)
Arabidopsis fusca mutants display striking purple coloration due to anthocyanin accumulation in their cotyledons. We describe six recessive fusca mutants isolated from Agrobacterium-transformed Arabidopsis families. These mutants first become defective during embryogenesis and exhibit limited seedling development. Double mutant constructs revealed that(More)
Arabidopsis cyt1 mutants have a complex phenotype indicative of a severe defect in cell wall biogenesis. Mutant embryos arrest as wide, heart-shaped structures characterized by ectopic accumulation of callose and the occurrence of incomplete cell walls. Texture and thickness of the cell walls are irregular, and unesterified pectins show an abnormally(More)
We describe here the diversity of chloroplast proteins required for embryo development in Arabidopsis (Arabidopsis thaliana). Interfering with certain chloroplast functions has long been known to result in embryo lethality. What has not been reported before is a comprehensive screen for embryo-defective (emb) mutants altered in chloroplast proteins. From a(More)
Over 5000 transgenic families of Arabidopsis thaliana produced following seed transformation with Agrobacterium tumefaciens were screened for embryonic lethals, defectives, and pattern mutants. One hundred and seventy-eight mutants with a wide range of developmental abnormalities were identified. Forty-one mutants appear from genetic studies to be tagged(More)