Learn More
Small angle x-ray scattering ͑SAXS͒ measurements were performed on nanoporous methyl silsesquioxane films that were generated by the incorporation of a sacrificial polymeric component into the matrix and subsequently removed by thermolysis. The average pore radii ranged from 1 to 5 nm over a porosity range of ϳ5–50%. The distribution in pore size was(More)
A glucose amperometric biosensor based on the immobilization of glucose oxidase (GOx) in microparticles prepared by polymerization of the ionic liquid 1-vinyl-3-ethyl-imidazolium bromide (ViEtIm+ Br-) using the concentrated emulsion polymerization method has been developed. The polymerization of the emulsion dispersed phase, in which the enzyme was(More)
Cross-linked imidazolium-based [poly(ViEtIm +Br -)] microparticles were synthesized, and their wetting properties were studied by optical microscopy, after addition of aqueous solutions of sodium halides. Particle wetting showed ion specificity due to counterion binding, described by Desnoyer's model. The interaction between anions and the microparticles(More)
The enzymatically catalyzed polymerization of 3,4-ethylenedioxythiophene in the presence of polystyrenesulfonate is introduced. This is the first time that an enzymatically catalyzed poly(3,4-ethylenedioxythiophene) (PEDOT) is reported. Horseradish peroxidase enzyme was used as a catalyst for the polymerization process leading to a water-soluble PEDOT that(More)
Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO(2) nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly(More)
Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used(More)
A systematic study of acid organocatalysts for the polyaddition of poly(ethylene glycol) to hexamethylene diisocyanate in solution has been performed. Among organic acids evaluated, sulfonic acids were found the most effective for urethane formations even when compared with conventional tin-based catalysts (dibutyltin dilaurate) or(More)
The novel application of gold and silver nanorods as irreversible thermochromic dyes in polymeric ionic liquid (PIL) nanocomposites is proposed here. These materials have been synthesized by anion exchange of an imidazolium-based PIL in a solution that also contained gold nanorods. This resulted in the entrapment of the nanoobjects within a solid polymer(More)