Learn More
We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three(More)
Pseudomonas fluorescens Q8r1-96 represents a group of rhizosphere strains responsible for the suppressiveness of agricultural soils to take-all disease of wheat. It produces the antibiotic 2,4-diacetylphloroglucinol and aggressively colonizes the roots of cereal crops. In this study, we analyzed the genome of Q8r1-96 and identified a type III protein(More)
In agro-ecosystems worldwide, some of the most important and devastating diseases are caused by soil-borne necrotrophic fungal pathogens, against which crop plants generally lack genetic resistance. However, plants have evolved approaches to protect themselves against pathogens by stimulating and supporting specific groups of beneficial microorganisms that(More)
Certain strains of the rhizosphere bacterium Pseudomonas fluorescens contain the phenazine biosynthesis operon (phzABCDEFG) and produce redox-active phenazine antibiotics that suppress a wide variety of soilborne plant pathogens. In 2007 and 2008, we isolated 412 phenazine-producing (Phz+) fluorescent Pseudomonas strains from roots of dryland wheat and(More)
The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia(More)
Pseudomonas fluorescens strain 2-79, a natural isolate of the rhizosphere of wheat (Triticum aestivum L.), possesses antagonistic potential toward several fungal pathogens. We report the draft genome sequence of strain 2-79, which comprises 5,674 protein-coding sequences.
Yeast deletion-mutant collections have been successfully used to infer the mode-of-action of drugs especially by profiling chemical-genetic and genetic-genetic interactions on a genome-wide scale. Although tens of thousands of those profiles are publicly available, a lack of an accurate method for mining such data has been a major bottleneck for more(More)
  • 1