Kathleen M Trybus19
M Yusuf Ali10
Elena B Krementsova7
Guy G Kennedy6
19Kathleen M Trybus
10M Yusuf Ali
7Elena B Krementsova
Learn More
Myosin V, a double-headed molecular motor, transports organelles within cells by walking processively along actin, a process that requires coordination between the heads. To understand the mechanism underlying this coordination, processive runs of single myosin V molecules were perturbed by varying nucleotide content. Contrary to current views, our results(More)
The double-headed myosin V molecular motor carries intracellular cargo processively along actin tracks in a hand-over-hand manner. To test this hypothesis at the molecular level, we observed single myosin V molecules that were differentially labeled with quantum dots having different emission spectra so that the position of each head could be identified(More)
Intracellular cargo transport requires microtubule-based motors, kinesin and cytoplasmic dynein, and the actin-based myosin motors to maneuver through the challenges presented by the filamentous meshwork that comprises the cytoskeleton. Recent in vitro single molecule biophysical studies have begun to explore this process by characterizing what occurs as(More)
Organelle transport to the periphery of the cell involves coordinated transport between the processive motors kinesin and myosin V. Long-range transport takes place on microtubule tracks, whereas final delivery involves shorter actin-based movements. The concept that motors only function on their appropriate track required further investigation with the(More)
Myosin V is a processive actin-based motor protein that takes multiple 36-nm steps to deliver intracellular cargo to its destination. In the laser trap, applied load slows myosin V heavy meromyosin stepping and increases the probability of backsteps. In the presence of 40 mm phosphate (P(i)), both forward and backward steps become less load-dependent. From(More)
Recent research efforts from several groups have addressed the question of whether the amplitude of myosin's unitary step size is proportional to the length of the neck region. Unconventional myosin V, which has an extended neck region with 6IQ motifs, provides a natural template by which to test the lever arm model via mutational analysis. The most(More)
In contracting muscle, individual myosin molecules function as part of a large ensemble, hydrolyzing ATP to power the relative sliding of actin filaments. The technological advances that have enabled direct observation and manipulation of single molecules, including recent experiments that have explored myosin's force-dependent properties, provide detailed(More)
Myosin Va (myoV) and myosin VI (myoVI) are processive molecular motors that transport cargo in opposite directions on actin tracks. Because these motors may bind to the same cargo in vivo, we developed an in vitro "tug of war" to characterize the stepping dynamics of single quantum-dot-labeled myoV and myoVI motors linked to a common cargo. MyoV dominates(More)
Certain types of intracellular organelle transport to the cell periphery are thought to involve long-range movement on microtubules by kinesin with subsequent handoff to vertebrate myosin Va (myoVa) for local delivery on actin tracks. This process may involve direct interactions between these two processive motors. Here we demonstrate using single molecule(More)
Myosin V is a double-headed unconventional myosin that has been implicated in organelle transport. To perform this role, myosin V may have a high duty cycle. To test this hypothesis and understand the properties of this molecule at the molecular level, we used the laser trap and in vitro motility assay to characterize the mechanics of heavy meromyosin-like(More)