David M. Schneider

Learn More
It has long been known that the brain is limited in the amount of sensory information that it can process at any given time. A well-known form of capacity limitation in vision is the set-size effect, whereby the time needed to find a target increases in the presence of distractors. The set-size effect implies that inputs from multiple objects interfere with(More)
Sensory regions of the brain integrate environmental cues with copies of motor-related signals important for imminent and ongoing movements. In mammals, signals propagating from the motor cortex to the auditory cortex are thought to have a critical role in normal hearing and behaviour, yet the synaptic and circuit mechanisms by which these motor-related(More)
In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these(More)
Natural behavior requires close but flexible coordination between attention, defined as selection for perception, and action. In recent years a distributed network including the lateral intraparietal area (LIP) has been implicated in visuospatial selection for attention and rapid eye movements (saccades), but the relation between the attentional and motor(More)
Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and(More)
In a recognition memory test for a just-studied word list, subjects responded positively or negatively to each test word in the presence of another subject, with the two taking turns to call out their responses. Responses given second tended to conform to those given first. This was so for responses to both targets and lures and following both positive and(More)
Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons(More)
Vocal communicators such as humans and songbirds readily recognize individual vocalizations, even in distracting auditory environments. This perceptual ability is likely subserved by auditory neurons whose spiking responses to individual vocalizations are minimally affected by background sounds. However, auditory neurons that produce background-invariant(More)
Birdsong is comprised of rich spectral and temporal organization, which might be used for vocal perception. To quantify how this structure could be used, we have reconstructed birdsong spectrograms by combining the spike trains of zebra finch auditory midbrain neurons with information about the correlations present in song. We calculated maximum a(More)
The receptive fields of many sensory neurons are sensitive to statistical differences among classes of complex stimuli. For example, excitatory spectral bandwidths of midbrain auditory neurons and the spatial extent of cortical visual neurons differ during the processing of natural stimuli compared to the processing of artificial stimuli. Experimentally(More)