Learn More
Imaging of scattered and reflected light from the surface of neural structures can reveal the functional architecture within large populations of neurons. These techniques exploit, as one of the principal signal sources, reflectance changes produced by local variation in blood volume and oxygen saturation related to neural activity. We found that a major(More)
Sleep is vital to cognitive performance, productivity, health and well-being. Earlier theories of sleep presumed that it occurred at the level of the whole organism and that it was governed by central control mechanisms. However, evidence now indicates that sleep might be regulated at a more local level in the brain: it seems to be a fundamental property of(More)
This study used high-resolution hemispheric mapping of somatosensory evoked potentials to determine the number and organization of secondary somatosensory areas (SII) in rat cortex. Two areas, referred to as SII and PV (parietoventral), revealed complete (SII) or nearly complete (PV) body maps. The vibrissa and somatic representation of SII was upright,(More)
The rodent whisker sensory system is a commonly used model of cortical processing; however, anesthetics cause profound differences in the shape and timing of evoked responses. Evoked response studies, especially those that use spatial mapping techniques, such as fMRI or optical imaging, will thus show significantly different results depending on the(More)
Collecting continuous video together with multichannel electrophysiological data and other experimental modalities requires high bandwidth and storage capacities, as well as accurate synchronization to detect correlations between different recorded events. Often, experiments are highly complex, with many variables requiring immediate analysis and feedback(More)
We assessed the correspondence of 660 nm light reflectance changes from the dorsal hippocampus with slow wave electroencephalographic (EEG) activity during quiet sleep (QS) and rapid eye movement (REM) sleep in four cats. An optic probe, attached to a charge-coupled-device (CCD) video camera, was placed on the dorsal hippocampal surface to collect(More)
To identify the neural constituents responsible for generating polarized light changes, we created spatially resolved movies of propagating action potentials from stimulated lobster leg nerves using both reflection and transmission imaging modalities. Changes in light polarization are associated with membrane depolarization and provide sub-millisecond(More)
We measured birefringence, 90 degree scattered light, and voltage sensitive dye changes from lobster walking leg nerves. Systematic application of key chemical agents revealed separate cellular mechanisms underlying fast optical signals. Each agent exhibited mixed effects, some having a greater effect on cellular swelling and refractive index, and some(More)
Cortical evoked response potentials (ERPs) display a rich set of waveforms that are both context and state dependent. However, the mechanisms that underlie state dependent ERP patterns are unclear. Determining those mechanisms through analysis of single trial ERP waveform signatures may provide insight into the regulation of cortical column state and the(More)
We used large-array optical recording procedures to examine maturation of regional neural activity within the ventral medullary surface (VMS) of anesthetized kittens during pharmacologically induced blood pressure elevation. Under sodium pentobarbital anesthesia, the VMS was exposed in 10, 20 and 30- to 45-day-old kittens and in adult cats. Arterial(More)