David M Printzenhoff

Learn More
We studied the effect of a novel anti-inflammatory agent, tenidap, on a cloned inwardly rectifying K+ channel, hKir2.3. Tenidap (a) potently potentiated 86Rb+ efflux through hKir2.3 channels expressed in Chinese hamster ovary cells (EC50=402 nM), (b) reversibly and dose-dependently increased whole-cell and macro-patch hKir2.3 currents (maximum whole-cell(More)
BACKGROUND AND PURPOSE NaV 1.8 ion channels have been highlighted as important molecular targets for the design of low MW blockers for the treatment of chronic pain. Here, we describe the effects of PF-01247324, a new generation, selective, orally bioavailable Nav 1.8 channel blocker of novel chemotype. EXPERIMENTAL APPROACH The inhibition of Nav 1.8(More)
The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally(More)
Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which(More)
  • 1