Learn More
The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples,(More)
Microbial life predominates in the ocean, yet little is known about its genomic variability, especially along the depth continuum. We report here genomic analyses of planktonic microbial communities in the North Pacific Subtropical Gyre, from the ocean's surface to near-sea floor depths. Sequence variation in microbial community genes reflected vertical(More)
The recent isolation of the ammonia-oxidizing crenarchaeon Nitrosopumilus maritimus has expanded the known phylogenetic distribution of nitrifying phenotypes beyond the domain Bacteria. To further characterize nitrification in the marine environment and explore the potential crenarchaeal contribution to this process, we quantified putative nitrifying genes(More)
The ocean's interior is Earth's largest biome. Recently, cultivation-independent ribosomal RNA gene surveys have indicated a potential importance for archaea in the subsurface ocean. But quantitative data on the abundance of specific microbial groups in the deep sea are lacking. Here we report a year-long study of the abundance of two specific archaeal(More)
Surface waters of the subtropical Sargasso Sea contain dissolved inorganic phosphate (DIP) concentrations of 0.2 to 1.0 nanomolar, which are sufficiently low to result in phosphorus control of primary production. The DIP concentrations in this area (which receives high inputs of iron-rich dust from arid regions of North Africa) are one to two orders of(More)
Fixed nitrogen (N) often limits the growth of organisms in terrestrial and aquatic biomes, and N availability has been important in controlling the CO2 balance of modern and ancient oceans. The fixation of atmospheric dinitrogen gas (N2) to ammonia is catalysed by nitrogenase and provides a fixed N for N-limited environments. The filamentous cyanobacterium(More)
The elemental composition of marine cyanobacteria is an important determinant of the ecological stoichiometry in low-latitude marine biomes. We analyzed the cellular carbon (C), nitrogen (N), and phosphorus (P) contents of Prochlorococcus (MED4) and Synechococcus (WH8103 and WH8012) under nutrient-replete and P-starved conditions. Under nutrient-replete(More)
Seven years of time-series observations of biogeochemical processes in the subtropical North Pacific Ocean gyre have revealed dramatic changes in the microbial community structure and in the mechanisms of nutrient cycling in response to large-scale ocean–atmosphere interactions. Several independent lines of evidence show that the fixation of atmospheric(More)
Deep chlorophyll maxima (DCMs) are widespread in large parts of the world's oceans. These deep layers of high chlorophyll concentration reflect a compromise of phytoplankton growth exposed to two opposing resource gradients: light supplied from above and nutrients supplied from below. It is often argued that DCMs are stable features. Here we show, however,(More)
The phylogenetic diversity of small-subunit rRNA genes associated with the domain Bacteria was examined (by using previously defined operational taxonomic units [C. L. Moyer, F.C. Dobbs, and D. M. Karl, Appl. Environ. Microbiol. 60:871-879, 1994]; those for Pele's Vents Bacteria are hereafter abbreviated PVB OTUs) with samples from a microbial mat at an(More)