Learn More
Ventral tegmental area (VTA) GABA neurons appear to be critical regulators of mesocorticolimbic dopamine (DA) neurotransmission, which has been implicated in alcohol reward. The aim of this study was to evaluate the effects of low-dose "non-contingent" intravenous (IV) ethanol (0.01-0.1 g/kg) on VTA GABA neuron firing rate and synaptic responses, as well as(More)
The neural mechanisms underlying the transition from a drug-nondependent to a drug-dependent state remain elusive. Chronic exposure to drugs has been shown to increase brain-derived neurotrophic factor (BDNF) levels in ventral tegmental area (VTA) neurons. BDNF infusions into the VTA potentiate several behavioral effects of drugs, including psychomotor(More)
BACKGROUND Withdrawal from chronic ethanol enhances ventral tegmental area (VTA) GABA neuron excitability and reduces mesolimbic dopamine (DA) neurotransmission, which is suppressed by acupuncture at Shenmen (HT7) points (Zhao et al., 2006). The aim of this study was to evaluate the effects of HT7 acupuncture on VTA GABA neuron excitability, ethanol(More)
Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol intoxication and(More)
Connexin-36 (Cx36) gap junctions (GJs) appear to be involved in the synchronization of GABA interneurons in many brain areas. We have previously identified a population of Cx36-connected ventral tegmental area (VTA) GABA neurons that may regulate mesolimbic dopamine (DA) neurotransmission, a system implicated in reward from both natural behaviors and drugs(More)
BACKGROUND Ventral tegmental area (VTA) gamma-aminobutyric acid (GABA) neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in drug reward. VTA GABA neuron firing rate is reduced by acute ethanol and enhanced by DA via D2 receptor(More)
  • 1