David M. Geiser

Learn More
The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi.(More)
The operational species concept, i.e., the one used to recognize species, is contrasted to the theoretical species concept. A phylogenetic approach to recognize fungal species based on concordance of multiple gene genealogies is compared to those based on morphology and reproductive behavior. Examples where Phylogenetic Species Recognition has been applied(More)
In colony collapse disorder (CCD), honey bee colonies inexplicably lose their workers. CCD has resulted in a loss of 50 to 90% of colonies in beekeeping operations across the United States. The observation that irradiated combs from affected colonies can be repopulated with naive bees suggests that infection may contribute to CCD. We used an unbiased(More)
A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota,(More)
ABSTRACT Agrobacterium tumefaciens-mediated transformation (ATMT) has long been used to transfer genes to a wide variety of plants and has also served as an efficient tool for insertional mutagenesis. In this paper, we report the construction of four novel binary vectors for fungal transformation and the optimization of an ATMT protocol for insertional(More)
The colonization of land by eukaryotes probably was facilitated by a partnership (symbiosis) between a photosynthesizing organism (phototroph) and a fungus. However, the time when colonization occurred remains speculative. The first fossil land plants and fungi appeared 480 to 460 million years ago (Ma), whereas molecular clock estimates suggest an earlier(More)
Species limits were investigated within the Fusarium graminearum clade (Fg clade) through phylogenetic analyses of DNA sequences from portions of 11 nuclear genes including the mating-type (MAT) locus. Nine phylogenetically distinct species were resolved within the Fg clade, and they all possess contiguous MAT1-1 and MAT1-2 idiomorphs consistent with a(More)
Analysis of Fusarium head blight (FHB) pathogen diversity revealed that 3ADON producing Fusarium graminearum are prevalent in North America and identified significant population structure associated with trichothecene chemotype differences (F(ST)>0.285; P<0.001). In addition, we identified a trichothecene chemotype cline in Canada and documented a recent(More)
One of the greatest impediments to the study of Fusarium has been the incorrect and confused application of species names to toxigenic and pathogenic isolates, owing in large part to intrinsic limitations of morphological species recognition and its application. To address this problem, we have created FUSARIUM-ID v. 1.0, a publicly available database of(More)
Aspergillus flavus, like approximately one-third of ascomycete fungi, is thought to be cosmopolitan and clonal because it has uniform asexual morphology. A. flavus produces aflatoxin on nuts, grains, and cotton, and assumptions about its life history are being used to develop strategies for its biological control. We tested the assumptions of clonality and(More)