David M Duda

Learn More
Histidine 64 in human carbonic anhydrase II (HCA II) functions in the catalytic pathway of CO(2) hydration as a shuttle to transfer protons between the zinc-bound water and bulk water. Catalysis of the exchange of (18)O between CO(2) and water, measured by mass spectrometry, is dependent on this proton transfer and was decreased more than 10-fold for H64A(More)
In the catalysis of the hydration of carbon dioxide and dehydration of bicarbonate by human carbonic anhydrase II (HCA II), a histidine residue (His64) shuttles protons between the zinc-bound solvent molecule and the bulk solution. To evaluate the effect of the position of the shuttle histidine and pH on proton shuttling, we have examined the catalysis and(More)
The maximal velocity of catalysis of CO(2) hydration by human carbonic anhydrase II (HCA II) requires proton transfer from zinc-bound water to solution assisted by His 64. The catalytic activity of a site-specific mutant of HCA II in which His 64 is replaced with Ala (H64A HCA II) can be rescued by exogenous proton donors/acceptors, usually derivatives of(More)
Using synchrotron radiation and a CCD detector, X-ray data have been collected at 100 K for the His64Ala mutant of human carbonic anhydrase II complexed with 4-methylimidazole (4-MI) to a maximal 1.05 A resolution, allowing full anisotropic least-squares refinement. The refined model has a conventional R factor of 15.7% for all reflections. The C(alpha)(More)
The residue phenylalanine 198 (Phe 198) is a prominent cause of the lower activity of human carbonic anhydrase III (HCA III) compared with HCA II and other isozymes which have leucine at this site. We report the crystal structures of HCA III and the site-directed mutant F198L HCA III, both at 2.1 A resolution, and the enhancement of catalytic activity by(More)
Carbonic anhydrases catalyze the interconversion of carbon dioxide to bicarbonate. Human carbonic anhydrase isozyme III with a C-terminal hexahistidine tag was overexpressed in Eschericha coli, purified and crystallized. Diffraction data (93.4% completeness) were collected to 2.2 A resolution on an in-house R-AXIS IV++ image-plate system with Osmic mirrors(More)
A model of the HKalpha2a subunit of the rabbit colonic H+, K+ ATPase has been generated using the crystal structure of the Ca(+2) ATPase as a template. A pairwise sequence alignment of the deduced primary sequences of the two proteins demonstrated that they share 29% amino acid sequence identity and 47% similarity. Using O (version 7) the model of HKalpha2a(More)
Crystals of human carbonic anhydrase II with a specific point mutation, His 64 to Ala, have been grown in a solution of ammonium sulfate in the presence of mercury chloride. The crystals appear in approximately two weeks and belong to the monoclinic space group P21, with unit cell parameters of a = 42.2 Å, b = 41.4 Å, c = 71.9 Å, β = 104.2 and one carbonic(More)
We have prepared a site-specific mutant of human carbonic anhydrase (HCA) II with histidine residues at positions 7 and 64 in the active site cavity. Using a different isozyme, we have placed histidine residues in HCA III at positions 64 and 67 and in another mutant at positions 64 and 7. Each of these histidine residues can act as a proton transfer group(More)
  • 1